Skip to content

Fix imatrix calculation for MLA models #5

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Jun 8, 2025
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
35 changes: 24 additions & 11 deletions tools/imatrix/imatrix.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -178,23 +178,36 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void *
} else {
auto & e = m_stats[wname];
if (e.values.empty()) {
e.values.resize(src1->ne[0], 0);
e.counts.resize(src1->ne[0], 0);
if (src0->ne[3] > 1) {
LOG_ERR("Unsupported 4D tensor %s\n", wname.c_str());
exit(1);
}
// If we have a 3D tensor as it is the case for the attn_k_b and attn_v_b for DeepSeek MLA models,
// than we need to compute the imatrix for each head, and not just one imatrx for all heads.
// Hence, the storage we need is src0->ne[0]*src0->ne[2].
e.values.resize(src0->ne[0]*src0->ne[2], 0);
e.counts.resize(src0->ne[0]*src0->ne[2], 0);
}
else if (e.values.size() != (size_t)src1->ne[0]) {
else if (e.values.size() != (size_t)(src0->ne[0]*src0->ne[2])) {
LOG_ERR("%s: inconsistent size for %s (%d vs %d)\n", __func__, wname.c_str(), (int)e.values.size(), (int)src1->ne[0]);
exit(1); //GGML_ABORT("fatal error");
}
++e.ncall;
LOG_DBGV(2, "%s[%d]: %32s, %s, %5d x %5d, %d\n", __func__, m_last_call, wname.c_str(), ggml_op_name(t->op), (int)src1->ne[0], (int)src1->ne[1], (int)src1->type);
for (int row = 0; row < (int)src1->ne[1]; ++row) {
const float * x = (const float *) (data + row * src1->nb[1]);
for (int j = 0; j < (int)src1->ne[0]; ++j) {
e.values[j] += x[j]*x[j];
e.counts[j]++;
if (!std::isfinite(e.values[j])) {
LOG_ERR("%f detected in %s\n", e.values[j], wname.c_str());
exit(1);
int rk2 = src1->ne[2]/src0->ne[2];
for (int i12 = 0; i12 < (int)src1->ne[2]; ++i12) { // i.e., loop over attention heads for MLA models
int i02 = i12/rk2;
auto values = e.values.data() + i02*src0->ne[0];
auto counts = e.counts.data() + i02*src0->ne[0];
for (int i11 = 0; i11 < (int)src1->ne[1]; ++i11) {
const float * x = (const float *)((const char *)data + i11*src1->nb[1] + i12*src1->nb[2]);
for (int j = 0; j < (int)src1->ne[0]; ++j) {
values[j] += x[j]*x[j];
counts[j]++;
if (!std::isfinite(values[j])) {
LOG_ERR("%f detected in %s\n", e.values[j], wname.c_str());
exit(1);
}
}
}
}
Expand Down
Loading