Skip to content

deps(llama.cpp): update #1714

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Feb 21, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion Makefile
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@ GOLLAMA_VERSION?=aeba71ee842819da681ea537e78846dc75949ac0

GOLLAMA_STABLE_VERSION?=50cee7712066d9e38306eccadcfbb44ea87df4b7

CPPLLAMA_VERSION?=f026f8120f97090d34a52b3dc023c82e0ede3f7d
CPPLLAMA_VERSION?=9350a1cf21b1492c69b20175b73a419b897d6a3a

# gpt4all version
GPT4ALL_REPO?=https://github.com/nomic-ai/gpt4all
Expand Down
152 changes: 105 additions & 47 deletions backend/cpp/llama/grpc-server.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -51,6 +51,7 @@ struct server_params
std::string hostname = "127.0.0.1";
std::vector<std::string> api_keys;
std::string public_path = "examples/server/public";
std::string chat_template = "chatml";
int32_t port = 8080;
int32_t read_timeout = 600;
int32_t write_timeout = 600;
Expand Down Expand Up @@ -349,6 +350,7 @@ struct llama_server_context

// slots / clients
std::vector<llama_client_slot> slots;
json default_generation_settings_for_props;

llama_server_queue queue_tasks;
llama_server_response queue_results;
Expand Down Expand Up @@ -445,6 +447,9 @@ struct llama_server_context
slots.push_back(slot);
}

default_generation_settings_for_props = get_formated_generation(slots.front());
default_generation_settings_for_props["seed"] = -1;

batch = llama_batch_init(n_ctx, 0, params.n_parallel);

// empty system prompt
Expand Down Expand Up @@ -527,27 +532,29 @@ struct llama_server_context
slot_params default_params;
llama_sampling_params default_sparams;

slot->params.stream = json_value(data, "stream", false);
slot->params.cache_prompt = json_value(data, "cache_prompt", false);
slot->params.n_predict = json_value(data, "n_predict", default_params.n_predict);
slot->sparams.top_k = json_value(data, "top_k", default_sparams.top_k);
slot->sparams.top_p = json_value(data, "top_p", default_sparams.top_p);
slot->sparams.min_p = json_value(data, "min_p", default_sparams.min_p);
slot->sparams.tfs_z = json_value(data, "tfs_z", default_sparams.tfs_z);
slot->sparams.typical_p = json_value(data, "typical_p", default_sparams.typical_p);
slot->sparams.temp = json_value(data, "temperature", default_sparams.temp);
slot->sparams.penalty_last_n = json_value(data, "repeat_last_n", default_sparams.penalty_last_n);
slot->sparams.penalty_repeat = json_value(data, "repeat_penalty", default_sparams.penalty_repeat);
slot->sparams.penalty_freq = json_value(data, "frequency_penalty", default_sparams.penalty_freq);
slot->sparams.penalty_present = json_value(data, "presence_penalty", default_sparams.penalty_present);
slot->sparams.mirostat = json_value(data, "mirostat", default_sparams.mirostat);
slot->sparams.mirostat_tau = json_value(data, "mirostat_tau", default_sparams.mirostat_tau);
slot->sparams.mirostat_eta = json_value(data, "mirostat_eta", default_sparams.mirostat_eta);
slot->sparams.penalize_nl = json_value(data, "penalize_nl", default_sparams.penalize_nl);
slot->params.n_keep = json_value(data, "n_keep", slot->params.n_keep);
slot->params.seed = json_value(data, "seed", default_params.seed);
slot->sparams.grammar = json_value(data, "grammar", default_sparams.grammar);
slot->sparams.n_probs = json_value(data, "n_probs", default_sparams.n_probs);
slot->params.stream = json_value(data, "stream", false);
slot->params.cache_prompt = json_value(data, "cache_prompt", false);
slot->params.n_predict = json_value(data, "n_predict", default_params.n_predict);
slot->sparams.top_k = json_value(data, "top_k", default_sparams.top_k);
slot->sparams.top_p = json_value(data, "top_p", default_sparams.top_p);
slot->sparams.min_p = json_value(data, "min_p", default_sparams.min_p);
slot->sparams.tfs_z = json_value(data, "tfs_z", default_sparams.tfs_z);
slot->sparams.typical_p = json_value(data, "typical_p", default_sparams.typical_p);
slot->sparams.temp = json_value(data, "temperature", default_sparams.temp);
slot->sparams.dynatemp_range = json_value(data, "dynatemp_range", default_sparams.dynatemp_range);
slot->sparams.dynatemp_exponent = json_value(data, "dynatemp_exponent", default_sparams.dynatemp_exponent);
slot->sparams.penalty_last_n = json_value(data, "repeat_last_n", default_sparams.penalty_last_n);
slot->sparams.penalty_repeat = json_value(data, "repeat_penalty", default_sparams.penalty_repeat);
slot->sparams.penalty_freq = json_value(data, "frequency_penalty", default_sparams.penalty_freq);
slot->sparams.penalty_present = json_value(data, "presence_penalty", default_sparams.penalty_present);
slot->sparams.mirostat = json_value(data, "mirostat", default_sparams.mirostat);
slot->sparams.mirostat_tau = json_value(data, "mirostat_tau", default_sparams.mirostat_tau);
slot->sparams.mirostat_eta = json_value(data, "mirostat_eta", default_sparams.mirostat_eta);
slot->sparams.penalize_nl = json_value(data, "penalize_nl", default_sparams.penalize_nl);
slot->params.n_keep = json_value(data, "n_keep", slot->params.n_keep);
slot->params.seed = json_value(data, "seed", default_params.seed);
slot->sparams.grammar = json_value(data, "grammar", default_sparams.grammar);
slot->sparams.n_probs = json_value(data, "n_probs", default_sparams.n_probs);

// infill
if (data.count("input_prefix") != 0)
Expand Down Expand Up @@ -626,18 +633,36 @@ struct llama_server_context
const int n_vocab = llama_n_vocab(model);
for (const auto &el : *logit_bias)
{
if (el.is_array() && el.size() == 2 && el[0].is_number_integer())
if (el.is_array() && el.size() == 2)
{
llama_token tok = el[0].get<llama_token>();
if (tok >= 0 && tok < n_vocab)
float bias;
if (el[1].is_number())
{
bias = el[1].get<float>();
}
else if (el[1].is_boolean() && !el[1].get<bool>())
{
bias = -INFINITY;
}
else
{
if (el[1].is_number())
continue;
}

if (el[0].is_number_integer())
{
llama_token tok = el[0].get<llama_token>();
if (tok >= 0 && tok < n_vocab)
{
slot->sparams.logit_bias[tok] = el[1].get<float>();
slot->sparams.logit_bias[tok] = bias;
}
else if (el[1].is_boolean() && !el[1].get<bool>())
}
else if (el[0].is_string())
{
auto toks = llama_tokenize(model, el[0].get<std::string>(), false);
for (auto tok : toks)
{
slot->sparams.logit_bias[tok] = -INFINITY;
slot->sparams.logit_bias[tok] = bias;
}
}
}
Expand Down Expand Up @@ -950,28 +975,44 @@ struct llama_server_context
{
continue;
}
clip_image_f32 * img_res = clip_image_f32_init();
if (!clip_image_preprocess(clp_ctx, img.img_data, img_res, /*pad2square =*/ true))
clip_image_f32_batch img_res_v;
img_res_v.size = 0;
img_res_v.data = nullptr;
if (!clip_image_preprocess(clp_ctx, img.img_data, img_res_v))
{
LOG_TEE("Error processing the given image");
clip_free(clp_ctx);
clip_image_f32_batch_free(img_res_v);
return false;
}
if (img_res_v.size == 0)
{
LOG_TEE("Error processing the given image");
return false;
}

// note: assumes only one image was returned by clip_image_preprocess
clip_image_f32 * img_res = img_res_v.data;

img.image_tokens = clip_n_patches(clp_ctx);
img.image_embedding = (float *)malloc(clip_embd_nbytes(clp_ctx));
if (!img.image_embedding)
{
LOG_TEE("Unable to allocate memory for image embeddings\n");
clip_image_f32_batch_free(img_res_v);
clip_free(clp_ctx);
return false;
}
LOG_TEE("slot %i - encoding image [id: %i]\n", slot.id, img.id);
if (!clip_image_encode(clp_ctx, params.n_threads, img_res, img.image_embedding))
{
LOG_TEE("Unable to encode image\n");
clip_image_f32_batch_free(img_res_v);
return false;
}
clip_image_f32_free(img_res);

clip_image_f32_batch_free(img_res_v);

img.request_encode_image = false;
}

Expand All @@ -990,11 +1031,6 @@ struct llama_server_context
queue_results.send(res);
}

json get_model_props()
{
return get_formated_generation(slots[0]);
}

json get_formated_generation(llama_client_slot &slot)
{
const auto eos_bias = slot.sparams.logit_bias.find(llama_token_eos(model));
Expand All @@ -1005,6 +1041,8 @@ struct llama_server_context
{"model", params.model_alias},
{"seed", slot.params.seed},
{"temperature", slot.sparams.temp},
{"dynatemp_range", slot.sparams.dynatemp_range},
{"dynatemp_exponent", slot.sparams.dynatemp_exponent},
{"top_k", slot.sparams.top_k},
{"top_p", slot.sparams.top_p},
{"min_p", slot.sparams.min_p},
Expand Down Expand Up @@ -1166,13 +1204,30 @@ struct llama_server_context
task.multitask_id = multitask_id;

// when a completion task's prompt array is not a singleton, we split it into multiple requests
if (task.data.count("prompt") && task.data.at("prompt").size() > 1)
{
split_multiprompt_task(task_id, task);
}

// otherwise, it's a single-prompt task, we actually queue it
queue_tasks.post(task);
// if there's numbers in the prompt array it will be treated as an array of tokens
if (task.data.count("prompt") != 0 && task.data.at("prompt").size() > 1) {
bool numbers = false;
for (const auto& e : task.data.at("prompt")) {
if (e.is_number()) {
numbers = true;
break;
}
}

// NOTE: split_multiprompt_task() does not handle a mix of strings and numbers,
// it will completely stall the server. I don't know where the bug for this is.
//
// if there are numbers, it needs to be treated like a single prompt,
// queue_tasks handles a mix of strings and numbers just fine.
if (numbers) {
queue_tasks.post(task);
} else {
split_multiprompt_task(task_id, task);
}
} else {
queue_tasks.post(task);
}
}

// for multiple images processing
Expand Down Expand Up @@ -1254,7 +1309,10 @@ struct llama_server_context
void split_multiprompt_task(int multitask_id, task_server& multiprompt_task)
{
int prompt_count = multiprompt_task.data.at("prompt").size();
assert(prompt_count > 1);
if (prompt_count <= 1) {
send_error(multiprompt_task, "error while handling multiple prompts");
return;
}

// generate all the ID for subtask
std::vector<int> subtask_ids(prompt_count);
Expand Down Expand Up @@ -1566,10 +1624,6 @@ struct llama_server_context
LOG_TEE("slot %d : in cache: %i tokens | to process: %i tokens\n", slot.id, slot.n_past, slot.num_prompt_tokens_processed);
}

LOG_TEE("slot %d : kv cache rm - [%d, end)\n", slot.id, (int) system_tokens.size() + slot.n_past);

llama_kv_cache_seq_rm(ctx, slot.id, system_tokens.size() + slot.n_past, -1);

slot.cache_tokens = prompt_tokens;

if (slot.n_past == slot.num_prompt_tokens && slot.n_past > 0)
Expand All @@ -1583,6 +1637,10 @@ struct llama_server_context
}
}

LOG_TEE("slot %d : kv cache rm - [%d, end)\n", slot.id, (int) system_tokens.size() + slot.n_past);

llama_kv_cache_seq_rm(ctx, slot.id, system_tokens.size() + slot.n_past, -1);

LOG_VERBOSE("prompt ingested", {
{"n_past", slot.n_past},
{"cached", tokens_to_str(ctx, slot.cache_tokens.cbegin(), slot.cache_tokens.cbegin() + slot.n_past)},
Expand Down