Skip to content

Rewriter: Fold Batchnorm nodes #2312

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
May 27, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
188 changes: 188 additions & 0 deletions onnxscript/rewriter/fuse_batchnorm.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,188 @@
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
"""Fuses BatchNormalization nodes into preceding nodes. Supported fusion patterns:
- BatchNormalization ∘ Conv -> Conv
- BatchNormalization ∘ ConvTranpose -> ConvTranpose
- BatchNormalization ∘ Gemm -> Gemm

Approach:
Given an inbound operation output: Y = W * X + B
And a BatchNormalization outputs: Y_BN = (gamma * (Y - μ) / std) + β, where std = sqrt(var + eps)

The fusion updates the inbound weights as follows:
- W_fused = W * (gamma / std)
- B_fused = (B - μ) * (gamma / std) + β
"""

from abc import ABC, abstractmethod
from typing import Mapping

import numpy as np

from onnxscript import ir
from onnxscript.rewriter import pattern as orp


def _reshape_for_broadcast(x: np.ndarray, rank: int, axis: int = 1) -> np.ndarray:
# Build shape: 1s everywhere except -1 at the target axis
broadcast_shape = [1 if axis != i else -1 for i in range(rank)]
return np.reshape(x, broadcast_shape)


class _FuseBatchNormBase(orp.RewriteRuleClassBase, ABC):
"""Interface for BatchNormalization nodes fusion."""

def __init__(
self,
op_type: str,
name: str | None = None,
remove_nodes: bool = True,
as_function: bool = False,
) -> None:
super().__init__(name=name, remove_nodes=remove_nodes, as_function=as_function)
self.op_type = op_type

@abstractmethod
def get_filters_axis(self, attributes: Mapping[str, ir.Attr]) -> int:
"""Return the axis along which BatchNorm scale should be broadcasted."""

def rewrite(self, op, x: ir.Value, inbound_out: ir.Value, batchnorm_out: ir.Value):
batchnorm_node = batchnorm_out.producer()
# Get BatchNorm parameters
gamma, beta, input_mean, input_var = [
inp.const_value.numpy() for inp in batchnorm_node.inputs[1:]
]

# 1e-5 is the default value for epsilon according to
# https://onnx.ai/onnx/operators/onnx__BatchNormalization.html#attributes
default_eps = ir.Attr("epsilon", ir.AttributeType.FLOAT, 1e-5)
eps = batchnorm_node.attributes.get("epsilon", default_eps).as_float()

# Compute the scale_factor to update the inbound weights and bias
scale_factor = gamma / np.sqrt(input_var + eps)

# Update inbound weights
inbound_node = inbound_out.producer()
weights = inbound_node.inputs[1].const_value.numpy()

# Reshape scale factor so it is broadcastable
axis = self.get_filters_axis(inbound_node.attributes)
fused_weights = ir.tensor(
weights * _reshape_for_broadcast(scale_factor, weights.ndim, axis=axis)
)

# Update bias
if len(inbound_node.inputs) > 2:
original_bias = inbound_node.inputs[2].const_value.numpy()
bias_name = inbound_node.inputs[2].name
else:
original_bias = np.zeros_like(input_mean)
bias_name = x.name + "_bias"
fused_bias = ir.tensor((original_bias - input_mean) * scale_factor + beta)

return op.op(
self.op_type,
inputs=[
x,
op.initializer(fused_weights, name=inbound_node.inputs[1].name),
op.initializer(fused_bias, name=bias_name),
],
attributes=inbound_node.attributes,
)

def check(
self, context, x, inbound_out: ir.Value, batchnorm_out: ir.Value
) -> orp.MatchResult:
del context # Unused
check_result = orp.MatchResult()

inbound_node = inbound_out.producer()
batchnorm_node = batchnorm_out.producer()

# Check that inbound weights + (inbound bias) + batchnorm params are initializers
# and that they are not graph inputs
initializers = [inbound_node.inputs[1], *batchnorm_node.inputs[1:]]
if len(inbound_node.inputs) > 2:
initializers.append(inbound_node.inputs[2])

for initializer in initializers:
if not initializer.is_initializer() or initializer.const_value is None:
return check_result.fail(f"{initializer.name} is not a constant initializer.")
if initializer.is_graph_input():
return check_result.fail(f"{initializer.name} is a graph input.")

return check_result


class FuseBatchNormIntoConv(_FuseBatchNormBase):
"""Replaces ``BatchNormalization(Conv(x))`` with ``Conv(x)``."""

def __init__(self):
super().__init__("Conv")

def get_filters_axis(self, attributes: Mapping[str, ir.Attr]) -> int:
return 0

def pattern(self, op, x):
return op.BatchNormalization(
op.Conv(x, _allow_other_inputs=True, _outputs=["inbound_out"]),
_allow_other_inputs=True,
_outputs=["batchnorm_out"],
)


class FuseBatchNormIntoConvTranspose(_FuseBatchNormBase):
"""Replaces ``BatchNormalization(ConvTranspose(x))`` with ``ConvTranspose(x)``."""

def __init__(self):
super().__init__("ConvTranspose")

def get_filters_axis(self, attributes: Mapping[str, ir.Attr]) -> int:
return 1

def pattern(self, op, x):
return op.BatchNormalization(
op.ConvTranspose(x, _allow_other_inputs=True, _outputs=["inbound_out"]),
_allow_other_inputs=True,
_outputs=["batchnorm_out"],
)


class FuseBatchNormIntoGemm(_FuseBatchNormBase):
"""Replaces ``BatchNormalization(Gemm(x))`` with ``Gemm(x)``."""

def __init__(self):
super().__init__("Gemm")

def get_filters_axis(self, attributes: Mapping[str, ir.Attr]) -> int:
return (
0 if attributes.get("transB") is not None and attributes["transB"].as_int() else 1
)

def pattern(self, op, x):
return op.BatchNormalization(
op.Gemm(x, _allow_other_inputs=True, _outputs=["inbound_out"]),
_allow_other_inputs=True,
_outputs=["batchnorm_out"],
)


fuse_batchnorm_into_conv_rule = FuseBatchNormIntoConv().rule()
fuse_batchnorm_into_convtranspose_rule = FuseBatchNormIntoConvTranspose().rule()
fuse_batchnorm_into_gemm_rule = FuseBatchNormIntoGemm().rule()


def fuse_batchnorm_rule_set() -> orp.RewriteRuleSet:
"""Returns a set of rewrite rules that fuse BatchNormalization nodes
into preceding nodes such as Conv, ConvTranspose, and Gemm.

Returns:
RewriteRuleSet
"""
return orp.RewriteRuleSet(
[
fuse_batchnorm_into_conv_rule,
fuse_batchnorm_into_convtranspose_rule,
fuse_batchnorm_into_gemm_rule,
]
)
Loading
Loading