Skip to content

[rewriter] Transpose rule #2255

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 12 commits into
base: main
Choose a base branch
from
Open

[rewriter] Transpose rule #2255

wants to merge 12 commits into from

Conversation

justinchuby
Copy link
Collaborator

@justinchuby justinchuby commented Apr 30, 2025

Create a rule to absorb a Transpose node into the initializer (fold constant). This rule is in place to handle initializers of any size. So users do not need to change the size limit of the optimizer when constant folding.

TODO

  • tests

Fix #2158

Copy link

codecov bot commented Apr 30, 2025

❌ 5 Tests Failed:

Tests completed Failed Passed Skipped
6097 5 6092 3057
View the top 3 failed test(s) by shortest run time
onnxscript.backend.onnx_export_test.TestOnnxBackEnd::test_export2python_produces_correct_onnx_script_model_0981_test_ai_onnx_ml_tree_ensemble_set_membership
Stack Traces | 0.009s run time
onnxscript/converter.py:460: in _eval_constant_expr
    return eval(cpl, self.globals, locals)  # pylint: disable=eval-used
E   NameError: name 'nan' is not defined

The above exception was the direct cause of the following exception:
..../test_ort_nightly/lib/python3.11.../site-packages/parameterized/parameterized.py:620: in standalone_func
    return func(*(a + p.args), **p.kwargs, **kw)
onnxscript/backend/onnx_export_test.py:271: in test_export2python_produces_correct_onnx_script_model
    functions = extract_functions(backend_test.name, code, self.test_folder)
onnxscript/backend/onnx_export_test.py:137: in extract_functions
    mod = importlib.import_module(import_name)
.../hostedtoolcache/Python/3.11.12.../x64/lib/python3.11/importlib/__init__.py:126: in import_module
    return _bootstrap._gcd_import(name[level:], package, level)
<frozen importlib._bootstrap>:1204: in _gcd_import
    ???
<frozen importlib._bootstrap>:1176: in _find_and_load
    ???
<frozen importlib._bootstrap>:1147: in _find_and_load_unlocked
    ???
<frozen importlib._bootstrap>:690: in _load_unlocked
    ???
..../test_ort_nightly/lib/python3.11.../_pytest/assertion/rewrite.py:185: in exec_module
    exec(co, module.__dict__)
tests/onnx_backend_test_code/test_ai_onnx_ml_tree_ensemble_set_membership.py:9: in <module>
    @script()
onnxscript/main.py:94: in transform
    result = script_check(f_ast, opset, env, src, default_opset=default_opset)
onnxscript/main.py:38: in script_check
    return convert.translate_function_def(f)
onnxscript/converter.py:1452: in translate_function_def
    fn_ir = self._translate_function_def_common(stmt)
onnxscript/converter.py:1439: in _translate_function_def_common
    self._translate_stmt(s, index_of_stmt=i)
onnxscript/converter.py:961: in _translate_stmt
    return self._translate_assign_stmt(node)
onnxscript/converter.py:1048: in _translate_assign_stmt
    assign(lhs, rhs)
onnxscript/converter.py:992: in assign
    t = self._translate_expr(rhs, lhs).name
onnxscript/converter.py:546: in _translate_expr
    r = self._translate_call_expr(node)
onnxscript/converter.py:825: in _translate_call_expr
    attrs = [
onnxscript/converter.py:826: in <listcomp>
    self._translate_attr(x, y, callee.op_schema.attributes[x])
onnxscript/converter.py:510: in _translate_attr
    val = self._eval_constant_expr(expr)
onnxscript/converter.py:462: in _eval_constant_expr
    raise NameError(
E   NameError: ERROR: Missing names, globals contains ['__name__', '__doc__', '__package__', '__loader__', '__spec__', '__file__', '__cached__', '__builtins__', '@py_builtins', '@pytest_ar', 'numpy', 'TensorProto', 'make_tensor', 'script', 'external_tensor', 'Opset', 'FLOAT', 'ai_onnx_ml5'], locals [].
E   at: Function 'bck_test_ai_onnx_ml_tree_ensemble_set_membership', line 3
E       Y = ai_onnx_ml5.TreeEnsemble(X, aggregate_function=1, leaf_targetids=[0, 1, 2, 3], leaf_weights=make_tensor("value", 1, dims=[4], vals=[1.0, 10.0, 1000.0, 100.0]), membership_values=make_tensor("value", 1, dims=[8], vals=[1.2000000476837158, 3.700000047683716, 8.0, 9.0, nan, 12.0, 7.0, nan]), n_targets=4, nodes_falseleafs=[1, 0, 1], nodes_falsenodeids=[2, 2, 3], nodes_featureids=[0, 0, 0], nodes_modes=make_tensor("value", 2, dims=[3], vals=[0, 6, 6]), nodes_splits=make_tensor("value", 1, dims=[3], vals=[11.0, 232344.0, nan]), nodes_trueleafs=[0, 1, 1], nodes_truenodeids=[1, 0, 1], post_transform=0, tree_roots=[0])
E                                                                                                                                                                                             ^
onnxscript.backend.onnx_export_test.TestOnnxBackEnd::test_export2python_produces_correct_onnx_script_model_0125_test_ai_onnx_ml_tree_ensemble_set_membership
Stack Traces | 0.01s run time
onnxscript/converter.py:460: in _eval_constant_expr
    return eval(cpl, self.globals, locals)  # pylint: disable=eval-used
E   NameError: name 'nan' is not defined

The above exception was the direct cause of the following exception:
..../test_ort_nightly/lib/python3.11.../site-packages/parameterized/parameterized.py:620: in standalone_func
    return func(*(a + p.args), **p.kwargs, **kw)
onnxscript/backend/onnx_export_test.py:271: in test_export2python_produces_correct_onnx_script_model
    functions = extract_functions(backend_test.name, code, self.test_folder)
onnxscript/backend/onnx_export_test.py:137: in extract_functions
    mod = importlib.import_module(import_name)
.../Library/Frameworks/Python.framework/Versions/3.11/lib/python3.11/importlib/__init__.py:126: in import_module
    return _bootstrap._gcd_import(name[level:], package, level)
<frozen importlib._bootstrap>:1204: in _gcd_import
    ???
<frozen importlib._bootstrap>:1176: in _find_and_load
    ???
<frozen importlib._bootstrap>:1147: in _find_and_load_unlocked
    ???
<frozen importlib._bootstrap>:690: in _load_unlocked
    ???
..../test_ort_nightly/lib/python3.11.../_pytest/assertion/rewrite.py:185: in exec_module
    exec(co, module.__dict__)
tests/onnx_backend_test_code/test_ai_onnx_ml_tree_ensemble_set_membership.py:9: in <module>
    @script()
onnxscript/main.py:94: in transform
    result = script_check(f_ast, opset, env, src, default_opset=default_opset)
onnxscript/main.py:38: in script_check
    return convert.translate_function_def(f)
onnxscript/converter.py:1452: in translate_function_def
    fn_ir = self._translate_function_def_common(stmt)
onnxscript/converter.py:1439: in _translate_function_def_common
    self._translate_stmt(s, index_of_stmt=i)
onnxscript/converter.py:961: in _translate_stmt
    return self._translate_assign_stmt(node)
onnxscript/converter.py:1048: in _translate_assign_stmt
    assign(lhs, rhs)
onnxscript/converter.py:992: in assign
    t = self._translate_expr(rhs, lhs).name
onnxscript/converter.py:546: in _translate_expr
    r = self._translate_call_expr(node)
onnxscript/converter.py:825: in _translate_call_expr
    attrs = [
onnxscript/converter.py:826: in <listcomp>
    self._translate_attr(x, y, callee.op_schema.attributes[x])
onnxscript/converter.py:510: in _translate_attr
    val = self._eval_constant_expr(expr)
onnxscript/converter.py:462: in _eval_constant_expr
    raise NameError(
E   NameError: ERROR: Missing names, globals contains ['__name__', '__doc__', '__package__', '__loader__', '__spec__', '__file__', '__cached__', '__builtins__', '@py_builtins', '@pytest_ar', 'numpy', 'TensorProto', 'make_tensor', 'script', 'external_tensor', 'Opset', 'FLOAT', 'ai_onnx_ml5'], locals [].
E   at: Function 'bck_test_ai_onnx_ml_tree_ensemble_set_membership', line 3
E       Y = ai_onnx_ml5.TreeEnsemble(X, aggregate_function=1, leaf_targetids=[0, 1, 2, 3], leaf_weights=make_tensor("value", 1, dims=[4], vals=[1.0, 10.0, 1000.0, 100.0]), membership_values=make_tensor("value", 1, dims=[8], vals=[1.2000000476837158, 3.700000047683716, 8.0, 9.0, nan, 12.0, 7.0, nan]), n_targets=4, nodes_falseleafs=[1, 0, 1], nodes_falsenodeids=[2, 2, 3], nodes_featureids=[0, 0, 0], nodes_modes=make_tensor("value", 2, dims=[3], vals=[0, 6, 6]), nodes_splits=make_tensor("value", 1, dims=[3], vals=[11.0, 232344.0, nan]), nodes_trueleafs=[0, 1, 1], nodes_truenodeids=[1, 0, 1], post_transform=0, tree_roots=[0])
E                                                                                                                                                                                             ^
onnxscript.backend.onnx_export_test.TestOnnxBackEnd::test_export2python_produces_correct_onnx_script_model_0026_test_ai_onnx_ml_tree_ensemble_set_membership
Stack Traces | 0.019s run time
onnxscript\converter.py:460: in _eval_constant_expr
    return eval(cpl, self.globals, locals)  # pylint: disable=eval-used
E   NameError: name 'nan' is not defined

The above exception was the direct cause of the following exception:
.nox\test_ort_nightly\Lib\site-packages\parameterized\parameterized.py:620: in standalone_func
    return func(*(a + p.args), **p.kwargs, **kw)
onnxscript\backend\onnx_export_test.py:271: in test_export2python_produces_correct_onnx_script_model
    functions = extract_functions(backend_test.name, code, self.test_folder)
onnxscript\backend\onnx_export_test.py:137: in extract_functions
    mod = importlib.import_module(import_name)
C:\hostedtoolcache\windows\Python\3.11.9\x64\Lib\importlib\__init__.py:126: in import_module
    return _bootstrap._gcd_import(name[level:], package, level)
<frozen importlib._bootstrap>:1204: in _gcd_import
    ???
<frozen importlib._bootstrap>:1176: in _find_and_load
    ???
<frozen importlib._bootstrap>:1147: in _find_and_load_unlocked
    ???
<frozen importlib._bootstrap>:690: in _load_unlocked
    ???
.nox\test_ort_nightly\Lib\site-packages\_pytest\assertion\rewrite.py:185: in exec_module
    exec(co, module.__dict__)
tests\onnx_backend_test_code\test_ai_onnx_ml_tree_ensemble_set_membership.py:9: in <module>
    @script()
onnxscript\main.py:94: in transform
    result = script_check(f_ast, opset, env, src, default_opset=default_opset)
onnxscript\main.py:38: in script_check
    return convert.translate_function_def(f)
onnxscript\converter.py:1452: in translate_function_def
    fn_ir = self._translate_function_def_common(stmt)
onnxscript\converter.py:1439: in _translate_function_def_common
    self._translate_stmt(s, index_of_stmt=i)
onnxscript\converter.py:961: in _translate_stmt
    return self._translate_assign_stmt(node)
onnxscript\converter.py:1048: in _translate_assign_stmt
    assign(lhs, rhs)
onnxscript\converter.py:992: in assign
    t = self._translate_expr(rhs, lhs).name
onnxscript\converter.py:546: in _translate_expr
    r = self._translate_call_expr(node)
onnxscript\converter.py:825: in _translate_call_expr
    attrs = [
onnxscript\converter.py:826: in <listcomp>
    self._translate_attr(x, y, callee.op_schema.attributes[x])
onnxscript\converter.py:510: in _translate_attr
    val = self._eval_constant_expr(expr)
onnxscript\converter.py:462: in _eval_constant_expr
    raise NameError(
E   NameError: ERROR: Missing names, globals contains ['__name__', '__doc__', '__package__', '__loader__', '__spec__', '__file__', '__cached__', '__builtins__', '@py_builtins', '@pytest_ar', 'numpy', 'TensorProto', 'make_tensor', 'script', 'external_tensor', 'Opset', 'FLOAT', 'ai_onnx_ml5'], locals [].
E   at: Function 'bck_test_ai_onnx_ml_tree_ensemble_set_membership', line 3
E       Y = ai_onnx_ml5.TreeEnsemble(X, aggregate_function=1, leaf_targetids=[0, 1, 2, 3], leaf_weights=make_tensor("value", 1, dims=[4], vals=[1.0, 10.0, 1000.0, 100.0]), membership_values=make_tensor("value", 1, dims=[8], vals=[1.2000000476837158, 3.700000047683716, 8.0, 9.0, nan, 12.0, 7.0, nan]), n_targets=4, nodes_falseleafs=[1, 0, 1], nodes_falsenodeids=[2, 2, 3], nodes_featureids=[0, 0, 0], nodes_modes=make_tensor("value", 2, dims=[3], vals=[0, 6, 6]), nodes_splits=make_tensor("value", 1, dims=[3], vals=[11.0, 232344.0, nan]), nodes_trueleafs=[0, 1, 1], nodes_truenodeids=[1, 0, 1], post_transform=0, tree_roots=[0])
E                                                                                                                                                                                             ^

To view more test analytics, go to the Test Analytics Dashboard
📋 Got 3 mins? Take this short survey to help us improve Test Analytics.

@justinchuby justinchuby marked this pull request as ready for review April 30, 2025 18:57
Copy link
Contributor

@Copilot Copilot AI left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Pull Request Overview

This PR adds a new rewrite rule to collapse Transpose nodes into initializers for constant folding, which removes the need to modify the optimizer’s size limit when folding constants.

  • Introduces the TransposeInitializer rule to handle initializer folding.
  • Implements the rewriting and checking logic to ensure the initializer meets usage requirements.
  • Registers the new rule in the rewriter’s initializer.

Reviewed Changes

Copilot reviewed 2 out of 2 changed files in this pull request and generated 1 comment.

File Description
onnxscript/rewriter/transpose_initializer.py Adds a new rewrite rule for folding Transpose nodes into initializers.
onnxscript/rewriter/init.py Registers the new transpose_initializer rule in the rule set.
Comments suppressed due to low confidence (1)

onnxscript/rewriter/transpose_initializer.py:28

  • [nitpick] Consider renaming 'original_transpose' to 'transpose_node' to more clearly indicate that it represents the Transpose node consumer of the initializer.
original_transpose = initializer.consumers()[0]

@justinchuby
Copy link
Collaborator Author

I think this is less efficient than an IR pass. Because it will match all transpose nodes, but we only need to look at users of the initializers. Thoughts? @titaiwangms @shubhambhokare1 @gramalingam

@justinchuby justinchuby marked this pull request as draft April 30, 2025 19:16
@justinchuby justinchuby marked this pull request as ready for review April 30, 2025 19:18
@justinchuby
Copy link
Collaborator Author

But this is op-specific. I don't think it fits in the common passes. So I prefer that it is a rewrite rule.

@titaiwangms titaiwangms requested a review from gramalingam April 30, 2025 20:01
@titaiwangms
Copy link
Contributor

I think this is less efficient than an IR pass. Because it will match all transpose nodes, but we only need to look at users of the initializers. Thoughts? @titaiwangms @shubhambhokare1 @gramalingam

With the check inside the rule, I assume it should not be too bad?

@titaiwangms
Copy link
Contributor

titaiwangms commented May 1, 2025

In the original issue, there are also transpose -> transpose and transpose -> MatMul/Gemm pattern matching. Should we have those in this rule as well? If we are going to go through Transpose nods anyway (I forget if we can check whether multiple rules are applicable within the same traverse.).

@justinchuby
Copy link
Collaborator Author

I think we should have different rules since they will match different nodes

@shubhambhokare1
Copy link
Contributor

Could we add

def test_transpose_transpose_onnxscript(self):
# TODO(rama): Attribute-parameters not yet supported in multi-output matching.
# def transpose_transpose_pattern(op, X, perm0, perm1):
# xt = op.Transpose(X, perm=perm0)
# Y = op.Transpose(xt, perm=perm1)
# return Y
def transpose_transpose_pattern(op, X):
XT = op.Transpose(X, _outputs=["XT"])
Y = op.Transpose(XT, _outputs=["Y"])
return Y
def transpose_transpose_mapping(perm0, perm1):
new_perm = [0 for p in perm0]
for i, p in enumerate(perm1):
new_perm[i] = perm0[p]
# replace by return [perm0[p] for p in perm1] ?
return new_perm
def transpose_transpose_check(op, **_) -> bool:
return True
def transpose_transpose_apply_pattern(op, X, XT: ir.Value, Y, **_):
perm0 = XT.producer().attributes.get("perm")
if perm0 is not None:
perm0 = perm0.value # TODO(rama): handle RefAttr
perm1 = Y.producer().attributes.get("perm")
if perm1 is not None:
perm1 = perm1.value # TODO(rama): handle RefAttr
if perm0 is None and perm1 is None:
return op.Identity(X)
if perm0 is None:
perm0 = range(len(perm1) - 1, -1, -1)
if perm1 is None:
perm1 = range(len(perm0) - 1, -1, -1)
composed_perm = transpose_transpose_mapping(perm0, perm1)
return op.Transpose(X, perm=composed_perm)
rule = pattern.RewriteRule(
transpose_transpose_pattern,
transpose_transpose_apply_pattern,
transpose_transpose_check,
self.matcher_algo,
verbose=0,

as part of this PR to upstream all the fusions done in https://github.com/microsoft/onnxruntime/blob/main/onnxruntime/python/tools/transformers/fusion_constant_fold.py

@justinchuby
Copy link
Collaborator Author

@shubhambhokare1 I see it's already in

transpose_transpose_rule,
, was it not applied?

@shubhambhokare1
Copy link
Contributor

@shubhambhokare1 I see it's already in

transpose_transpose_rule,

, was it not applied?

Ah I see, however the one in https://github.com/microsoft/onnxruntime/blob/main/onnxruntime/python/tools/transformers/fusion_constant_fold.py seems to be doing,
inp -> Transpose -> Transpose -> out
to
inp -> out if transpose perm values are equal

Whereas the current rewrite rule only replace two transposes with an equivalent single transpose

@justinchuby
Copy link
Collaborator Author

@shubhambhokare1 I see it's already in

transpose_transpose_rule,

, was it not applied?

Ah I see, however the one in microsoft/onnxruntime@main/onnxruntime/python/tools/transformers/fusion_constant_fold.py seems to be doing, inp -> Transpose -> Transpose -> out to inp -> out if transpose perm values are equal

Whereas the current rewrite rule only replace two transposes with an equivalent single transpose

Sounds good. I will update

@justinchuby
Copy link
Collaborator Author

@shubhambhokare1 does this one

or this one do it?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
Development

Successfully merging this pull request may close these issues.

[rewrite] Transpose initializer -> initializer (transposed)
3 participants