22# ⚠️ WARNING - AUTO-GENERATED CODE - DO NOT EDIT ⚠️
33# ⚙️ Generated by 'python -m opgen'
44# --------------------------------------------------------------------------
5- # Copyright (c) Microsoft Corporation. All rights reserved.
5+ # Copyright (c) Microsoft Corporation.
66# Licensed under the MIT License.
77# --------------------------------------------------------------------------
88# pylint: disable=W0221,W0222,R0901,W0237
99# mypy: disable-error-code=override
10- # ruff: noqa: N801,E741
11- # ruff: noqa: D214,D402,D405,D411,D412,D416,D417
10+ # ruff: noqa: D214, D402, D405, D411, D416, D417
1211# --------------------------------------------------------------------------
1312
1413from __future__ import annotations
@@ -398,7 +397,18 @@ def BatchNormalization(
398397 )
399398
400399 T2_Cast : TypeAlias = Union [
401- BOOL , DOUBLE , FLOAT , FLOAT16 , INT16 , INT32 , INT64 , INT8 , UINT16 , UINT32 , UINT64 , UINT8
400+ BOOL ,
401+ DOUBLE ,
402+ FLOAT ,
403+ FLOAT16 ,
404+ INT16 ,
405+ INT32 ,
406+ INT64 ,
407+ INT8 ,
408+ UINT16 ,
409+ UINT32 ,
410+ UINT64 ,
411+ UINT8 ,
402412 ]
403413
404414 def Cast (self , input : T1_Cast , * , to : str ) -> T2_Cast :
@@ -837,7 +847,11 @@ def Dropout(
837847 T_Elu = TypeVar ("T_Elu" , DOUBLE , FLOAT , FLOAT16 )
838848
839849 def Elu (
840- self , X : T_Elu , * , alpha : float = 1.0 , consumed_inputs : Optional [Sequence [int ]] = None
850+ self ,
851+ X : T_Elu ,
852+ * ,
853+ alpha : float = 1.0 ,
854+ consumed_inputs : Optional [Sequence [int ]] = None ,
841855 ) -> T_Elu :
842856 r"""[🌐 Elu(1)](https://onnx.ai/onnx/operators/onnx__Elu.html#elu-1 "Online Documentation")
843857
@@ -849,7 +863,7 @@ def Elu(
849863
850864
851865 Args:
852- X: 1D input tensor
866+ X: Input tensor
853867
854868 alpha: Coefficient of ELU default to 1.0.
855869
@@ -859,7 +873,9 @@ def Elu(
859873 schema = get_schema ("Elu" , 1 , "" )
860874 op = Op (self , "Elu" , schema )
861875 return op (
862- * self ._prepare_inputs (schema , X ), alpha = alpha , consumed_inputs = consumed_inputs
876+ * self ._prepare_inputs (schema , X ),
877+ alpha = alpha ,
878+ consumed_inputs = consumed_inputs ,
863879 )
864880
865881 T_Equal = TypeVar ("T_Equal" , BOOL , INT32 , INT64 )
@@ -1338,7 +1354,12 @@ def GlobalMaxPool(self, X: T_GlobalMaxPool) -> T_GlobalMaxPool:
13381354 T1_Greater : TypeAlias = BOOL
13391355
13401356 def Greater (
1341- self , A : T_Greater , B : T_Greater , * , axis : Optional [int ] = None , broadcast : int = 0
1357+ self ,
1358+ A : T_Greater ,
1359+ B : T_Greater ,
1360+ * ,
1361+ axis : Optional [int ] = None ,
1362+ broadcast : int = 0 ,
13421363 ) -> T1_Greater :
13431364 r"""[🌐 Greater(1)](https://onnx.ai/onnx/operators/onnx__Greater.html#greater-1 "Online Documentation")
13441365
@@ -1603,7 +1624,11 @@ def LRN(
16031624 schema = get_schema ("LRN" , 1 , "" )
16041625 op = Op (self , "LRN" , schema )
16051626 return op (
1606- * self ._prepare_inputs (schema , X ), alpha = alpha , beta = beta , bias = bias , size = size
1627+ * self ._prepare_inputs (schema , X ),
1628+ alpha = alpha ,
1629+ beta = beta ,
1630+ bias = bias ,
1631+ size = size ,
16071632 )
16081633
16091634 T_LSTM = TypeVar ("T_LSTM" , DOUBLE , FLOAT , FLOAT16 )
@@ -1822,7 +1847,9 @@ def LeakyRelu(
18221847 schema = get_schema ("LeakyRelu" , 1 , "" )
18231848 op = Op (self , "LeakyRelu" , schema )
18241849 return op (
1825- * self ._prepare_inputs (schema , X ), alpha = alpha , consumed_inputs = consumed_inputs
1850+ * self ._prepare_inputs (schema , X ),
1851+ alpha = alpha ,
1852+ consumed_inputs = consumed_inputs ,
18261853 )
18271854
18281855 T_Less = TypeVar ("T_Less" , DOUBLE , FLOAT , FLOAT16 )
@@ -1935,7 +1962,11 @@ def LogSoftmax(self, input: T_LogSoftmax, *, axis: int = 1) -> T_LogSoftmax:
19351962 )
19361963
19371964 def Loop (
1938- self , M : Optional [I_Loop ], cond : Optional [B_Loop ], * v_initial : V_Loop , body : GraphProto
1965+ self ,
1966+ M : Optional [I_Loop ],
1967+ cond : Optional [B_Loop ],
1968+ * v_initial : V_Loop ,
1969+ body : GraphProto ,
19391970 ) -> V_Loop :
19401971 r"""[🌐 Loop(1)](https://onnx.ai/onnx/operators/onnx__Loop.html#loop-1 "Online Documentation")
19411972
@@ -1954,7 +1985,7 @@ def Loop(
19541985 This table summarizes the operating modes of this operator with equivalent
19551986 C-style code:
19561987
1957- Operator inputs defined as (max_trip_count, condition_var).
1988+ Operator inputs defined as (max_trip_count, condition_var).
19581989
19591990 input ("", ""):
19601991 for (int i=0; ; ++i) {
@@ -2493,7 +2524,11 @@ def Or(self, A: T_Or, B: T_Or, *, axis: Optional[int] = None, broadcast: int = 0
24932524 T_PRelu = TypeVar ("T_PRelu" , DOUBLE , FLOAT , FLOAT16 )
24942525
24952526 def PRelu (
2496- self , X : T_PRelu , slope : T_PRelu , * , consumed_inputs : Optional [Sequence [int ]] = None
2527+ self ,
2528+ X : T_PRelu ,
2529+ slope : T_PRelu ,
2530+ * ,
2531+ consumed_inputs : Optional [Sequence [int ]] = None ,
24972532 ) -> T_PRelu :
24982533 r"""[🌐 PRelu(1)](https://onnx.ai/onnx/operators/onnx__PRelu.html#prelu-1 "Online Documentation")
24992534
@@ -2567,7 +2602,10 @@ def Pad(
25672602 schema = get_schema ("Pad" , 1 , "" )
25682603 op = Op (self , "Pad" , schema )
25692604 return op (
2570- * self ._prepare_inputs (schema , data ), mode = mode , paddings = paddings , value = value
2605+ * self ._prepare_inputs (schema , data ),
2606+ mode = mode ,
2607+ paddings = paddings ,
2608+ value = value ,
25712609 )
25722610
25732611 T_Pow = TypeVar ("T_Pow" , DOUBLE , FLOAT , FLOAT16 )
@@ -2975,7 +3013,11 @@ def RandomUniformLike(
29753013 schema = get_schema ("RandomUniformLike" , 1 , "" )
29763014 op = Op (self , "RandomUniformLike" , schema )
29773015 return op (
2978- * self ._prepare_inputs (schema , input ), dtype = dtype , high = high , low = low , seed = seed
3016+ * self ._prepare_inputs (schema , input ),
3017+ dtype = dtype ,
3018+ high = high ,
3019+ low = low ,
3020+ seed = seed ,
29793021 )
29803022
29813023 T_Reciprocal = TypeVar ("T_Reciprocal" , DOUBLE , FLOAT , FLOAT16 )
@@ -3004,7 +3046,11 @@ def Reciprocal(
30043046 T_ReduceL1 = TypeVar ("T_ReduceL1" , DOUBLE , FLOAT , FLOAT16 , INT32 , INT64 , UINT32 , UINT64 )
30053047
30063048 def ReduceL1 (
3007- self , data : T_ReduceL1 , * , axes : Optional [Sequence [int ]] = None , keepdims : int = 1
3049+ self ,
3050+ data : T_ReduceL1 ,
3051+ * ,
3052+ axes : Optional [Sequence [int ]] = None ,
3053+ keepdims : int = 1 ,
30083054 ) -> T_ReduceL1 :
30093055 r"""[🌐 ReduceL1(1)](https://onnx.ai/onnx/operators/onnx__ReduceL1.html#reducel1-1 "Online Documentation")
30103056
@@ -3034,7 +3080,11 @@ def ReduceL1(
30343080 T_ReduceL2 = TypeVar ("T_ReduceL2" , DOUBLE , FLOAT , FLOAT16 , INT32 , INT64 , UINT32 , UINT64 )
30353081
30363082 def ReduceL2 (
3037- self , data : T_ReduceL2 , * , axes : Optional [Sequence [int ]] = None , keepdims : int = 1
3083+ self ,
3084+ data : T_ReduceL2 ,
3085+ * ,
3086+ axes : Optional [Sequence [int ]] = None ,
3087+ keepdims : int = 1 ,
30383088 ) -> T_ReduceL2 :
30393089 r"""[🌐 ReduceL2(1)](https://onnx.ai/onnx/operators/onnx__ReduceL2.html#reducel2-1 "Online Documentation")
30403090
@@ -3066,7 +3116,11 @@ def ReduceL2(
30663116 )
30673117
30683118 def ReduceLogSum (
3069- self , data : T_ReduceLogSum , * , axes : Optional [Sequence [int ]] = None , keepdims : int = 1
3119+ self ,
3120+ data : T_ReduceLogSum ,
3121+ * ,
3122+ axes : Optional [Sequence [int ]] = None ,
3123+ keepdims : int = 1 ,
30703124 ) -> T_ReduceLogSum :
30713125 r"""[🌐 ReduceLogSum(1)](https://onnx.ai/onnx/operators/onnx__ReduceLogSum.html#reducelogsum-1 "Online Documentation")
30723126
@@ -3132,7 +3186,11 @@ def ReduceLogSumExp(
31323186 T_ReduceMax = TypeVar ("T_ReduceMax" , DOUBLE , FLOAT , FLOAT16 , INT32 , INT64 , UINT32 , UINT64 )
31333187
31343188 def ReduceMax (
3135- self , data : T_ReduceMax , * , axes : Optional [Sequence [int ]] = None , keepdims : int = 1
3189+ self ,
3190+ data : T_ReduceMax ,
3191+ * ,
3192+ axes : Optional [Sequence [int ]] = None ,
3193+ keepdims : int = 1 ,
31363194 ) -> T_ReduceMax :
31373195 r"""[🌐 ReduceMax(1)](https://onnx.ai/onnx/operators/onnx__ReduceMax.html#reducemax-1 "Online Documentation")
31383196
@@ -3164,7 +3222,11 @@ def ReduceMax(
31643222 )
31653223
31663224 def ReduceMean (
3167- self , data : T_ReduceMean , * , axes : Optional [Sequence [int ]] = None , keepdims : int = 1
3225+ self ,
3226+ data : T_ReduceMean ,
3227+ * ,
3228+ axes : Optional [Sequence [int ]] = None ,
3229+ keepdims : int = 1 ,
31683230 ) -> T_ReduceMean :
31693231 r"""[🌐 ReduceMean(1)](https://onnx.ai/onnx/operators/onnx__ReduceMean.html#reducemean-1 "Online Documentation")
31703232
@@ -3194,7 +3256,11 @@ def ReduceMean(
31943256 T_ReduceMin = TypeVar ("T_ReduceMin" , DOUBLE , FLOAT , FLOAT16 , INT32 , INT64 , UINT32 , UINT64 )
31953257
31963258 def ReduceMin (
3197- self , data : T_ReduceMin , * , axes : Optional [Sequence [int ]] = None , keepdims : int = 1
3259+ self ,
3260+ data : T_ReduceMin ,
3261+ * ,
3262+ axes : Optional [Sequence [int ]] = None ,
3263+ keepdims : int = 1 ,
31983264 ) -> T_ReduceMin :
31993265 r"""[🌐 ReduceMin(1)](https://onnx.ai/onnx/operators/onnx__ReduceMin.html#reducemin-1 "Online Documentation")
32003266
@@ -3226,7 +3292,11 @@ def ReduceMin(
32263292 )
32273293
32283294 def ReduceProd (
3229- self , data : T_ReduceProd , * , axes : Optional [Sequence [int ]] = None , keepdims : int = 1
3295+ self ,
3296+ data : T_ReduceProd ,
3297+ * ,
3298+ axes : Optional [Sequence [int ]] = None ,
3299+ keepdims : int = 1 ,
32303300 ) -> T_ReduceProd :
32313301 r"""[🌐 ReduceProd(1)](https://onnx.ai/onnx/operators/onnx__ReduceProd.html#reduceprod-1 "Online Documentation")
32323302
@@ -3256,7 +3326,11 @@ def ReduceProd(
32563326 T_ReduceSum = TypeVar ("T_ReduceSum" , DOUBLE , FLOAT , FLOAT16 , INT32 , INT64 , UINT32 , UINT64 )
32573327
32583328 def ReduceSum (
3259- self , data : T_ReduceSum , * , axes : Optional [Sequence [int ]] = None , keepdims : int = 1
3329+ self ,
3330+ data : T_ReduceSum ,
3331+ * ,
3332+ axes : Optional [Sequence [int ]] = None ,
3333+ keepdims : int = 1 ,
32603334 ) -> T_ReduceSum :
32613335 r"""[🌐 ReduceSum(1)](https://onnx.ai/onnx/operators/onnx__ReduceSum.html#reducesum-1 "Online Documentation")
32623336
@@ -3371,7 +3445,9 @@ def Reshape(
33713445 schema = get_schema ("Reshape" , 1 , "" )
33723446 op = Op (self , "Reshape" , schema )
33733447 return op (
3374- * self ._prepare_inputs (schema , data ), consumed_inputs = consumed_inputs , shape = shape
3448+ * self ._prepare_inputs (schema , data ),
3449+ consumed_inputs = consumed_inputs ,
3450+ shape = shape ,
33753451 )
33763452
33773453 T_Selu = TypeVar ("T_Selu" , DOUBLE , FLOAT , FLOAT16 )
@@ -3632,7 +3708,7 @@ def Softplus(self, X: T_Softplus) -> T_Softplus:
36323708
36333709
36343710 Args:
3635- X: (differentiable) 1D input tensor
3711+ X: (differentiable) Input tensor
36363712 """
36373713
36383714 schema = get_schema ("Softplus" , 1 , "" )
@@ -4019,7 +4095,12 @@ def Unsqueeze(self, data: T_Unsqueeze, *, axes: Sequence[int]) -> T_Unsqueeze:
40194095 T_Upsample = TypeVar ("T_Upsample" , BOOL , DOUBLE , FLOAT , FLOAT16 , INT32 , INT64 )
40204096
40214097 def Upsample (
4022- self , X : T_Upsample , * , height_scale : float , mode : str = "nearest" , width_scale : float
4098+ self ,
4099+ X : T_Upsample ,
4100+ * ,
4101+ height_scale : float ,
4102+ mode : str = "nearest" ,
4103+ width_scale : float ,
40234104 ) -> T_Upsample :
40244105 r"""[🌐 Upsample(1)](https://onnx.ai/onnx/operators/onnx__Upsample.html#upsample-1 "Online Documentation")
40254106
0 commit comments