Skip to content

Fix contextually typed object literal completions where the object being edited affects its own inference #36555

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
51 changes: 39 additions & 12 deletions src/compiler/checker.ts
Original file line number Diff line number Diff line change
Expand Up @@ -468,7 +468,29 @@ namespace ts {
getRootSymbols,
getContextualType: (nodeIn: Expression, contextFlags?: ContextFlags) => {
const node = getParseTreeNode(nodeIn, isExpression);
return node ? getContextualType(node, contextFlags) : undefined;
if (!node) {
return undefined;
}
const containingCall = findAncestor(node, isCallLikeExpression);
const containingCallResolvedSignature = containingCall && getNodeLinks(containingCall).resolvedSignature;
if (contextFlags! & ContextFlags.BaseConstraint && containingCall) {
let toMarkSkip = node as Node;
do {
getNodeLinks(toMarkSkip).skipDirectInference = true;
toMarkSkip = toMarkSkip.parent;
} while (toMarkSkip && toMarkSkip !== containingCall);
getNodeLinks(containingCall).resolvedSignature = undefined;
}
const result = getContextualType(node, contextFlags);
if (contextFlags! & ContextFlags.BaseConstraint && containingCall) {
let toMarkSkip = node as Node;
do {
getNodeLinks(toMarkSkip).skipDirectInference = undefined;
toMarkSkip = toMarkSkip.parent;
} while (toMarkSkip && toMarkSkip !== containingCall);
getNodeLinks(containingCall).resolvedSignature = containingCallResolvedSignature;
}
return result;
},
getContextualTypeForObjectLiteralElement: nodeIn => {
const node = getParseTreeNode(nodeIn, isObjectLiteralElementLike);
Expand Down Expand Up @@ -17797,6 +17819,14 @@ namespace ts {
undefined;
}

function hasSkipDirectInferenceFlag(node: Node) {
return !!getNodeLinks(node).skipDirectInference;
}

function isFromInferenceBlockedSource(type: Type) {
return !!(type.symbol && some(type.symbol.declarations, hasSkipDirectInferenceFlag));
}

function inferTypes(inferences: InferenceInfo[], originalSource: Type, originalTarget: Type, priority: InferencePriority = 0, contravariant = false) {
let symbolStack: Symbol[];
let visited: Map<number>;
Expand Down Expand Up @@ -17887,7 +17917,7 @@ namespace ts {
// of inference. Also, we exclude inferences for silentNeverType (which is used as a wildcard
// when constructing types from type parameters that had no inference candidates).
if (getObjectFlags(source) & ObjectFlags.NonInferrableType || source === nonInferrableAnyType || source === silentNeverType ||
(priority & InferencePriority.ReturnType && (source === autoType || source === autoArrayType))) {
(priority & InferencePriority.ReturnType && (source === autoType || source === autoArrayType)) || isFromInferenceBlockedSource(source)) {
return;
}
const inference = getInferenceInfoForType(target);
Expand Down Expand Up @@ -18191,7 +18221,7 @@ namespace ts {
// type and then make a secondary inference from that type to T. We make a secondary inference
// such that direct inferences to T get priority over inferences to Partial<T>, for example.
const inference = getInferenceInfoForType((<IndexType>constraintType).type);
if (inference && !inference.isFixed) {
if (inference && !inference.isFixed && !isFromInferenceBlockedSource(source)) {
const inferredType = inferTypeForHomomorphicMappedType(source, target, <IndexType>constraintType);
if (inferredType) {
// We assign a lower priority to inferences made from types containing non-inferrable
Expand Down Expand Up @@ -21450,19 +21480,16 @@ namespace ts {
}

// In a typed function call, an argument or substitution expression is contextually typed by the type of the corresponding parameter.
function getContextualTypeForArgument(callTarget: CallLikeExpression, arg: Expression, contextFlags?: ContextFlags): Type | undefined {
function getContextualTypeForArgument(callTarget: CallLikeExpression, arg: Expression): Type | undefined {
const args = getEffectiveCallArguments(callTarget);
const argIndex = args.indexOf(arg); // -1 for e.g. the expression of a CallExpression, or the tag of a TaggedTemplateExpression
return argIndex === -1 ? undefined : getContextualTypeForArgumentAtIndex(callTarget, argIndex, contextFlags);
return argIndex === -1 ? undefined : getContextualTypeForArgumentAtIndex(callTarget, argIndex);
}

function getContextualTypeForArgumentAtIndex(callTarget: CallLikeExpression, argIndex: number, contextFlags?: ContextFlags): Type {
function getContextualTypeForArgumentAtIndex(callTarget: CallLikeExpression, argIndex: number): Type {
// If we're already in the process of resolving the given signature, don't resolve again as
// that could cause infinite recursion. Instead, return anySignature.
let signature = getNodeLinks(callTarget).resolvedSignature === resolvingSignature ? resolvingSignature : getResolvedSignature(callTarget);
if (contextFlags && contextFlags & ContextFlags.BaseConstraint && signature.target && !hasTypeArguments(callTarget)) {
signature = getBaseSignature(signature.target);
}
const signature = getNodeLinks(callTarget).resolvedSignature === resolvingSignature ? resolvingSignature : getResolvedSignature(callTarget);

if (isJsxOpeningLikeElement(callTarget) && argIndex === 0) {
return getEffectiveFirstArgumentForJsxSignature(signature, callTarget);
Expand Down Expand Up @@ -21858,7 +21885,7 @@ namespace ts {
}
/* falls through */
case SyntaxKind.NewExpression:
return getContextualTypeForArgument(<CallExpression | NewExpression>parent, node, contextFlags);
return getContextualTypeForArgument(<CallExpression | NewExpression>parent, node);
case SyntaxKind.TypeAssertionExpression:
case SyntaxKind.AsExpression:
return isConstTypeReference((<AssertionExpression>parent).type) ? undefined : getTypeFromTypeNode((<AssertionExpression>parent).type);
Expand Down Expand Up @@ -21908,7 +21935,7 @@ namespace ts {
// (as below) instead!
return node.parent.contextualType;
}
return getContextualTypeForArgumentAtIndex(node, 0, contextFlags);
return getContextualTypeForArgumentAtIndex(node, 0);
}

function getEffectiveFirstArgumentForJsxSignature(signature: Signature, node: JsxOpeningLikeElement) {
Expand Down
1 change: 1 addition & 0 deletions src/compiler/types.ts
Original file line number Diff line number Diff line change
Expand Up @@ -4249,6 +4249,7 @@ namespace ts {
outerTypeParameters?: TypeParameter[]; // Outer type parameters of anonymous object type
instantiations?: Map<Type>; // Instantiations of generic type alias (undefined if non-generic)
isExhaustive?: boolean; // Is node an exhaustive switch statement
skipDirectInference?: true; // Flag set by the API `getContextualType` call on a node when `BaseConstraint` is passed to force the checker to skip making inferences to a node's type
}

export const enum TypeFlags {
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,64 @@
/// <reference path="fourslash.ts" />

////interface MyOptions {
//// hello?: boolean;
//// world?: boolean;
////}
////declare function bar<T extends MyOptions>(options?: Partial<T>): void;
////bar({ hello: true, /*1*/ });
////
////interface Test {
//// keyPath?: string;
//// autoIncrement?: boolean;
////}
////
////function test<T extends Record<string, Test>>(opt: T) { }
////
////test({
//// a: {
//// keyPath: 'x.y',
//// autoIncrement: true
//// },
//// b: {
//// /*2*/
//// }
////});
////type Colors = {
//// rgb: { r: number, g: number, b: number };
//// hsl: { h: number, s: number, l: number }
////};
////
////function createColor<T extends keyof Colors>(kind: T, values: Colors[T]) { }
////
////createColor('rgb', {
//// /*3*/
////});
////
////declare function f<T extends 'a' | 'b', U extends { a?: string }, V extends { b?: string }>(x: T, y: { a: U, b: V }[T]): void;
////
////f('a', {
//// /*4*/
////});
////
////declare function f2<T extends { x?: string }>(x: T): void;
////f2({
//// /*5*/
////});
////
////type X = { a: { a }, b: { b } }
////
////function f4<T extends 'a' | 'b'>(p: { kind: T } & X[T]) { }
////
////f4({
//// kind: "a",
//// /*6*/
////})

verify.completions(
{ marker: "1", exact: [{ name: "world", sortText: completion.SortText.OptionalMember }] },
{ marker: "2", exact: [{ name: "keyPath", sortText: completion.SortText.OptionalMember }, { name: "autoIncrement", sortText: completion.SortText.OptionalMember }] },
{ marker: "3", exact: ["r", "g", "b"] },
{ marker: "4", exact: [{ name: "a", sortText: completion.SortText.OptionalMember }] },
{ marker: "5", exact: [{ name: "x", sortText: completion.SortText.OptionalMember }] },
{ marker: "6", exact: ["a"] },
);