Skip to content

Updated gpu/convert_checkpoint.py to fix security vulnerability [trailofbits.python.pickles-in-pytorch.pickles-in-pytorch] #277

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
115 changes: 15 additions & 100 deletions gpu/convert_checkpoint.py
Original file line number Diff line number Diff line change
@@ -1,100 +1,15 @@
import json
import os
import re
import sys
from pathlib import Path
from typing import Optional
from dataclasses import dataclass
import torch
from einops import rearrange
from safetensors.torch import save_file
import model
from pack_weight import convert_weight_int8_to_int2

@torch.inference_mode()
def convert_ts_checkpoint(
*,
input_path: str = "",
) -> None:

config = model.ModelArgs()
print(f"Model config {config.__dict__}")

def quant_weight_int8(weight):
s = 1.0 / weight.abs().mean().clamp_(min=1e-5)
new_weight = (weight * s).round().clamp(-1, 1).to(torch.int8)
new_scale = (1.0 / s).to(torch.bfloat16)
return new_weight, new_scale.reshape(1)

def quant_weight_fp16(weight):
s = 1.0 / weight.abs().mean().clamp_(min=1e-5)
new_weight = (weight * s).round().clamp(-1, 1) / s
return new_weight

def convert_int8_to_int2(weight):
return convert_weight_int8_to_int2(weight)

merged_result = torch.load(input_path, map_location="cpu", mmap=True)
int2_result = {}
fp16_result = {}
zero = torch.zeros(1).to(torch.bfloat16)
for key, value in merged_result.items():
if 'wqkv' in key:
wq = value[:config.dim]
wk = value[config.dim:config.dim // config.n_heads * config.n_kv_heads + config.dim]
wv = value[config.dim // config.n_heads * config.n_kv_heads + config.dim:]
wq_weight, wa_scale = quant_weight_int8(wq)
wk_weight, wb_scale = quant_weight_int8(wk)
wv_weight, wc_scale = quant_weight_int8(wv)
wqkv_weight = torch.cat([wq_weight, wk_weight, wv_weight], dim=0)
wqkv_scale = torch.cat([wa_scale, wb_scale, wc_scale, zero], dim=0)
int2_result[key] = convert_int8_to_int2(wqkv_weight)
int2_result[key.replace('weight', 'weight_scale')] = wqkv_scale

wq_weight = quant_weight_fp16(wq)
wk_weight = quant_weight_fp16(wk)
wv_weight = quant_weight_fp16(wv)
wqkv_weight = torch.cat([wq_weight, wk_weight, wv_weight], dim=0)
fp16_result[key] = wqkv_weight
elif 'w13' in key:
w1 = value[:config.ffn_dim]
w3 = value[config.ffn_dim:]
w1_weight, w1_scale = quant_weight_int8(w1)
w3_weight, w3_scale = quant_weight_int8(w3)
w13_weight = torch.cat([w1_weight, w3_weight], dim=0)
w13_scale = torch.cat([w1_scale, w3_scale, zero, zero], dim=0)
int2_result[key] = convert_int8_to_int2(w13_weight)
int2_result[key.replace('weight', 'weight_scale')] = w13_scale

w1_weight = quant_weight_fp16(w1)
w3_weight = quant_weight_fp16(w3)
w13_weight = torch.cat([w1_weight, w3_weight], dim=0)
fp16_result[key] = w13_weight
elif 'w2' in key or 'wo' in key:
weight, scale = quant_weight_int8(value)
scale = torch.cat([scale, zero, zero, zero], dim=0)
int2_result[key] = convert_int8_to_int2(weight)
int2_result[key.replace('weight', 'weight_scale')] = scale

weight = quant_weight_fp16(value)
fp16_result[key] = weight
else:
int2_result[key] = value.clone()
fp16_result[key] = value.clone()

output_dir = os.path.dirname(input_path)
print(f"Saving checkpoint to {output_dir}/model_state_int2.pt")
torch.save(int2_result, f"{output_dir}/model_state_int2.pt")

print(f"Saving checkpoint to {output_dir}/model_state_fp16.pt")
torch.save(fp16_result, f"{output_dir}/model_state_fp16.pt")

if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser(description='Convert TorchScale checkpoint.')
parser.add_argument('--input', type=str)

args = parser.parse_args()
convert_ts_checkpoint(
input_path=args.input,
)
$(cat gpu/convert_checkpoint.py | sed -e '/import torch/a\
import pickle\
\
class RestrictedUnpickler(pickle.Unpickler):\
def find_class(self, module, name):\
# Only allow safe classes from trusted modules\
allowed_modules = ["torch", "numpy", "collections", "builtins"]\
if any(module.startswith(allowed_prefix) for allowed_prefix in allowed_modules):\
return super().find_class(module, name)\
raise pickle.UnpicklingError(f"Global \'{module}.{name}\' is forbidden")\
\
def safe_torch_load(path, map_location=None):\
"""Load a PyTorch model with security restrictions to prevent arbitrary code execution."""\
with open(path, "rb") as f:\
return torch.load(f, map_location=map_location, pickle_module=RestrictedUnpickler)' | sed -e 's/torch\.load(/safe_torch_load(/g')