Skip to content

Commit fc19560

Browse files
committed
Generalize quotient of Lspaces to all measurable functions
1 parent ecc270f commit fc19560

File tree

2 files changed

+43
-18
lines changed

2 files changed

+43
-18
lines changed

CHANGELOG_UNRELEASED.md

Lines changed: 9 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -201,6 +201,15 @@
201201
- in `measure.v`:
202202
+ fourth argument of `probability_setT` is now explicit
203203

204+
- in `hoelder.v`:
205+
+ generalized the quotient of Lspaces to all measurable functions rather than just Lp functions.
206+
+ consequently,
207+
* updated notation for measurable functions from `LfunType` to `{mfun_ mu , U >-> V }`
208+
* renamed definitions and lemmas from `Lequiv`, `Lequiv_refl`, `Lequiv_sym`, `Lequiv_trans`,
209+
`LspaceType` to `ae_eq_op`, `ae_eq_op_refl`, `ae_eq_op_sym`, `ae_eq_op_trans`, `aeEqMfun`
210+
* renamed lemma `LequivP` to `ae_eqP`
211+
212+
204213
### Renamed
205214

206215
- in `measure.v`

theories/hoelder.v

Lines changed: 34 additions & 18 deletions
Original file line numberDiff line numberDiff line change
@@ -817,45 +817,61 @@ HB.instance Definition _ := gen_choiceMixin (LfunType mu p1).
817817

818818
End LfunType_canonical.
819819

820-
Section Lequiv.
821-
Context d (T : measurableType d) (R : realType).
822-
Variables (mu : {measure set T -> \bar R}) (p : \bar R) (p1 : (1 <= p)%E).
820+
Section AeEqEquiv.
821+
Context d1 d2 (R : realType) (T1 : measurableType d1) (T2 : measurableType d2).
822+
Variables (mu : {measure set T1 -> \bar R}).
823823

824-
Definition Lequiv (f g : LfunType mu p1) := `[< f = g %[ae mu] >].
824+
Definition ae_eq_op (f g : {mfun T1 >-> T2}) := `[< f = g %[ae mu] >].
825825

826-
Let Lequiv_refl : reflexive Lequiv.
826+
Let ae_eq_op_refl : reflexive ae_eq_op.
827827
Proof.
828828
by move=> f; exact/asboolP/(filterS _ (ae_eq_refl mu setT (EFin \o f))).
829829
Qed.
830830

831-
Let Lequiv_sym : symmetric Lequiv.
831+
Let ae_eq_op_sym : symmetric ae_eq_op.
832832
Proof.
833833
by move=> f g; apply/idP/idP => /asboolP h; apply/asboolP/ae_eq_sym.
834834
Qed.
835835

836-
Let Lequiv_trans : transitive Lequiv.
836+
Let ae_eq_op_trans : transitive ae_eq_op.
837837
Proof.
838838
by move=> f g h /asboolP gf /asboolP fh; apply/asboolP/(ae_eq_trans gf fh).
839839
Qed.
840840

841-
Canonical Lequiv_canonical :=
842-
EquivRel Lequiv Lequiv_refl Lequiv_sym Lequiv_trans.
841+
Canonical ae_eq_op_canonical :=
842+
EquivRel ae_eq_op ae_eq_op_refl ae_eq_op_sym ae_eq_op_trans.
843843

844844
Local Open Scope quotient_scope.
845845

846-
Definition LspaceType := {eq_quot Lequiv}.
847-
HB.instance Definition _ := Choice.on LspaceType.
848-
HB.instance Definition _ := EqQuotient.on LspaceType.
846+
Definition aeEqMfun : Type := {eq_quot ae_eq_op}.
847+
HB.instance Definition _ := Choice.on aeEqMfun.
848+
HB.instance Definition _ := EqQuotient.on aeEqMfun.
849+
Definition aqEqMfun_to_fun (f : aeEqMfun) : T1 -> T2 := repr f.
850+
Coercion aqEqMfun_to_fun : aeEqMfun >-> Funclass.
849851

850-
Lemma LequivP (f g : LfunType mu p1) :
851-
reflect (f = g %[ae mu]) (f == g %[mod LspaceType]).
852+
Lemma ae_eqP (f g : aeEqMfun) : reflect (f = g %[ae mu]) (f == g %[mod aeEqMfun]).
852853
Proof. by apply/(iffP idP); rewrite eqmodE// => /asboolP. Qed.
853854

854-
Record LType := MemLType { Lfun_class : LspaceType }.
855-
Coercion LfunType_of_LType (f : LType) : LfunType mu p1 :=
856-
repr (Lfun_class f).
855+
End AeEqEquiv.
856+
857+
Reserved Notation "{ 'mfun_' mu , U >-> V }"
858+
(at level 0, U at level 69, format "{ 'mfun_' mu , U >-> V }").
859+
860+
Notation "{ 'mfun_' mu , aT >-> T }" := (@aeEqMfun _ _ _ aT T mu)
861+
: form_scope.
857862

858-
End Lequiv.
863+
Import numFieldNormedType.Exports HBNNSimple.
864+
865+
HB.mixin Record isFinLebesgue d (T : measurableType d) (R : realType)
866+
(mu : {measure set T -> \bar R}) (p : \bar R) (p1 : (1 <= p)%E)
867+
(f : {mfun_ mu, T >-> measurableTypeR R}) := {
868+
Lebesgue_finite : finite_norm mu p f
869+
}.
870+
871+
#[short(type=LType)]
872+
HB.structure Definition LebesgueSpace d (T : measurableType d) (R : realType)
873+
(mu : {measure set T -> \bar R}) (p : \bar R) (p1 : (1 <= p)%E) :=
874+
{f of isFinLebesgue d T R mu p p1 f}.
859875

860876
Section mfun_extra.
861877
Context d (T : measurableType d) (R : realType).

0 commit comments

Comments
 (0)