@@ -40,7 +40,7 @@ Local Open Scope ring_scope.
4040(** definitions and lemmas to make a bridge between MathComp intervals and
4141 classical sets *)
4242Section set_itv_porderType.
43- Variables (d : Order.disp_t) (T : porderType d ).
43+ Variables (disp : Order.disp_t) (T : porderType disp ).
4444Implicit Types (i j : interval T) (x y : T) (a : itv_bound T).
4545
4646Definition neitv i := [set` i] != set0.
7777
7878Lemma subset_itvl (a b c : itv_bound T) : (b <= c)%O ->
7979 [set` Interval a b] `<=` [set` Interval a c].
80- Proof .
81- case: c => [[|] c bc x/=|[//|_] x/=].
82- - rewrite !in_itv/= => /andP[->/=].
83- case: b bc => [[|]/=|[|]//] b bc.
84- by move=> /lt_le_trans; exact.
85- by move=> /le_lt_trans; exact.
86- - rewrite !in_itv/= => /andP[->/=].
87- case: b bc => [[|]/=|[|]//] b bc.
88- by move=> /ltW /le_trans; apply.
89- by move=> /le_trans; apply.
90- - by move: x; rewrite le_ninfty => /eqP ->.
91- - by rewrite !in_itv/=; case: a => [[|]/=|[|]//] a /andP[->].
92- Qed .
80+ Proof . by move=> /subitvPr /subsetP h; apply/subsetP => x /h. Qed .
9381
9482Lemma subset_itvr (a b c : itv_bound T) : (c <= a)%O ->
9583 [set` Interval a b] `<=` [set` Interval c b].
96- Proof .
97- move=> ac x/=; rewrite !in_itv/= => /andP[ax ->]; rewrite andbT.
98- move: c a ax ac => [[|] c [[|]/= a ax|[|]//=]|[//|]]; rewrite ?bnd_simp.
99- - by move=> /le_trans; exact.
100- - by move=> /le_trans; apply; exact/ltW.
101- - by move=> /lt_le_trans; exact.
102- - by move=> /le_lt_trans; exact.
103- - by move=> [[|]|[|]//].
104- Qed .
84+ Proof . by move=> /subitvPl /subsetP h; apply/subsetP => x /h. Qed .
10585
106- Lemma subset_itvW_bound (x y z u : itv_bound T) :
107- (x <= y)%O -> (z <= u)%O -> [set` Interval y z] `<=` [set` Interval x u].
108- Proof .
109- move=> xy zu.
110- by apply: (@subset_trans _ [set` Interval x z]);
111- [exact: subset_itvr | exact: subset_itvl].
112- Qed .
86+ Lemma subset_itv (a b c d : itv_bound T) : (c <= a)%O -> (b <= d)%O ->
87+ [set` Interval a b] `<=` [set` Interval c d].
88+ Proof . by move=> ac bd; apply/(subset_trans (subset_itvl _))/subset_itvr. Qed .
11389
11490Lemma subset_itvScc (a b : itv_bound T) (c e : T) :
11591 (BLeft c <= a)%O -> (b <= BRight e)%O ->
@@ -236,7 +212,7 @@ by rewrite andbT; split => //; exact/nesym/eqP.
236212Qed .
237213
238214End set_itv_porderType.
239- Arguments neitv {d T} _.
215+ Arguments neitv {disp T} _.
240216#[deprecated(since="mathcomp-analysis 1.4.0", note="renamed to subset_itvScc")]
241217Notation subset_itvS := subset_itvScc (only parsing).
242218
0 commit comments