Skip to content

Commit daf0fad

Browse files
committed
minor fix
1 parent ee484f4 commit daf0fad

File tree

2 files changed

+2
-3
lines changed

2 files changed

+2
-3
lines changed

theories/lebesgue_integral.v

Lines changed: 1 addition & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -3754,8 +3754,7 @@ apply: (@le_lt_trans _ _ (\sum_(i <oo) `|fine (a i)|%:E)).
37543754
apply lee_nneseries => // n _; rewrite integral_dirac//.
37553755
move: (@summable_pinfty _ _ _ _ sa n Logic.I).
37563756
by case: (a n) => //= r _; rewrite indicE/= mem_set// mul1r.
3757-
move: (sa); rewrite /summable (_ : [set: nat] = xpredT)//; last exact/seteqP.
3758-
rewrite -nneseries_esum//; apply: le_lt_trans.
3757+
move: (sa); rewrite /summable -fun_true -nneseries_esum//; apply: le_lt_trans.
37593758
by apply lee_nneseries => // n _ /=; case: (a n) => //; rewrite leey.
37603759
Qed.
37613760

theories/measure.v

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -2543,7 +2543,7 @@ Definition fin_num_fun d (T : semiRingOfSetsType d) (R : numDomainType)
25432543
(mu : set T -> \bar R) := forall U, measurable U -> mu U \is a fin_num.
25442544

25452545
Lemma fin_num_fun_lty d (T : algebraOfSetsType d) (R : realFieldType)
2546-
(mu : set T -> \bar R) : fin_num_fun mu -> mu setT < +oo.
2546+
(mu : set T -> \bar R) : fin_num_fun mu -> mu setT < +oo.
25472547
Proof. by move=> h; rewrite ltey_eq h. Qed.
25482548

25492549
Lemma lty_fin_num_fun d (T : algebraOfSetsType d)

0 commit comments

Comments
 (0)