@@ -82,11 +82,8 @@ move=> S21 S12 S1i; rewrite ler_oppl opprK le_sup// ?has_inf_supN//.
8282exact/nonemptyN.
8383Qed .
8484
85- Definition EFinf {R : numDomainType} (f : R -> R) : \bar R -> \bar R :=
86- fun x => if x is r%:E then (f r)%:E else x.
87-
88- Lemma nondecreasing_EFinf (R : realDomainType) (f : R -> R) :
89- {homo f : x y / (x <= y)%R} -> {homo EFinf f : x y / (x <= y)%E}.
85+ Lemma nondecreasing_er_map (R : realDomainType) (f : R -> R) :
86+ {homo f : x y / (x <= y)%R} -> {homo er_map f : x y / (x <= y)%E}.
9087Proof .
9188move=> ndf.
9289by move=> [r| |] [l| |]//=; rewrite ?leey ?leNye// !lee_fin; exact: ndf.
9592Section hlength.
9693Local Open Scope ereal_scope.
9794Variables (R : realType) (f : R -> R).
98- Let g : \bar R -> \bar R := EFinf f.
95+ Let g : \bar R -> \bar R := er_map f.
9996
10097Implicit Types i j : interval R.
10198Definition itvs : Type := R.
179176Lemma hlength_ge0 (ndf : {homo f : x y / (x <= y)%R}) i : 0 <= hlength [set` i].
180177Proof .
181178rewrite hlength_itv; case: ifPn => //; case: (i.1 : \bar _) => [r| |].
182- - by rewrite suber_ge0// => /ltW /(nondecreasing_EFinf ndf).
179+ - by rewrite suber_ge0// => /ltW /(nondecreasing_er_map ndf).
183180- by rewrite ltNge leey.
184181- by case: (i.2 : \bar _) => //= [r _]; rewrite leey.
185182Qed .
@@ -504,7 +501,7 @@ Variables (d : measure_display) (R : realType) (f : cumulative R).
504501
505502Let m := [the measure _ _ of lebesgue_stieltjes_measure d f].
506503
507- Let g : \bar R -> \bar R := EFinf f.
504+ Let g : \bar R -> \bar R := er_map f.
508505
509506Let lebesgue_stieltjes_measure_itvoc (a b : R) :
510507 (m `]a, b] = hlength f `]a, b])%classic.
0 commit comments