Skip to content

Commit 33c4747

Browse files
committed
linting (wip)
1 parent 254959c commit 33c4747

File tree

1 file changed

+35
-36
lines changed

1 file changed

+35
-36
lines changed

theories/topology.v

Lines changed: 35 additions & 36 deletions
Original file line numberDiff line numberDiff line change
@@ -3601,10 +3601,10 @@ Proof. by rewrite setT_bool; apply/compactU; exact: compact_set1. Qed.
36013601
End DiscreteTopology.
36023602
#[global] Hint Resolve discrete_bool : core.
36033603

3604-
Definition second_countable (T : topologicalType) := exists B,
3604+
Definition second_countable (T : topologicalType) := exists B,
36053605
[/\ countable B,
3606-
forall A, B A -> open A &
3607-
forall (x:T) V, nbhs x V -> exists A, B A /\ nbhs x A /\ A `<=` V].
3606+
B `<=` open &
3607+
forall (x : T) V, nbhs x V -> exists A, [/\ B A, nbhs x A & A `<=` V]].
36083608

36093609
Section ClopenSets.
36103610
Implicit Types (T : topologicalType).
@@ -3630,7 +3630,7 @@ Lemma clopenT {T} : clopen [set: T].
36303630
Proof. by split; [exact: openT | exact: closedT]. Qed.
36313631

36323632
Lemma clopen_comp {T U : topologicalType} (f : T -> U) (A : set U) :
3633-
clopen A -> continuous f -> clopen (f@^-1` A).
3633+
clopen A -> continuous f -> clopen (f @^-1` A).
36343634
Proof. by case=> ? ?; split; [ exact: open_comp | exact: closed_comp]. Qed.
36353635

36363636
Lemma clopen_separatedP {T} (A : set T) : clopen A <-> separated A (~` A).
@@ -3670,20 +3670,20 @@ move=> /( _ _ _ (fun C y => ~ C y) (powerset_filter_from_filter PF)); case.
36703670
by move=> D [] DF Dsub [C] DC /(_ _ DC) /subsetC2/filterS; apply; exact: DF.
36713671
Qed.
36723672

3673-
Lemma clopen_countable {T} :
3673+
Lemma clopen_countable {T} :
36743674
compact [set: T] -> second_countable T -> countable (@clopen T).
36753675
Proof.
36763676
move=> cmpT [B []] /fset_subset_countable cntB obase Bbase.
36773677
apply/(card_le_trans _ cntB)/pcard_surjP.
3678-
pose f := (fun (F : {fset set T}) => \bigcup_(x in [set` F]) x); exists f.
3679-
move=> D [] oD cD /=; have cmpt : cover_compact D.
3678+
pose f := fun (F : {fset set T}) => \bigcup_(x in [set` F]) x; exists f.
3679+
move=> D [] oD cD /=; have cmpt : cover_compact D.
36803680
by rewrite -compact_cover; exact: (subclosed_compact _ cmpT).
3681-
have h : forall (x : T), exists (V : set T), D x -> B V /\ nbhs x V /\ V `<=` D.
3682-
move=> x; case: (pselect (D x)); last by move=> ?; exists set0.
3683-
by rewrite openE in oD; move=> /oD/Bbase [A[] ? [] ? ?]; exists A.
3684-
pose h' := fun z => projT1 (cid (h z)); have [] := @cmpt T D h'.
3681+
have h (x : T) : exists (V : set T), D x -> B V /\ nbhs x V /\ V `<=` D.
3682+
case: (pselect (D x)); last by move=> ?; exists set0.
3683+
by rewrite openE in oD => /oD/Bbase [A[] ? ? ?]; exists A.
3684+
pose h' z := projT1 (cid (h z)); have [] := @cmpt T D h'.
36853685
- by move=> z Dz; apply: obase; have [] := projT2 (cid (h z)) Dz.
3686-
- move=> z Dz; exists z => //; apply: nbhs_singleton.
3686+
- move=> z Dz; exists z => //; apply: nbhs_singleton.
36873687
by have [? []] := projT2 (cid (h z)) Dz.
36883688
move=> fs fsD DsubC; exists ([fset h' z | z in fs])%fset.
36893689
move=> U/imfsetP [z] /fsD /set_mem Dz ->; rewrite inE.
@@ -3696,13 +3696,13 @@ Qed.
36963696

36973697
Lemma totally_disconnected_prod (I : choiceType) (T : I -> topologicalType) :
36983698
(forall i, @totally_disconnected (T i)) ->
3699-
(@totally_disconnected (product_topologicalType T)).
3699+
totally_disconnected (product_topologicalType T).
37003700
Proof.
37013701
move=> dctTI /= x y /eqP xneqy.
37023702
have [i /eqP /dctTI [A] [] Axi [] nAy coA] : exists i, x i <> y i.
3703-
by apply/existsNP=> W; apply/xneqy/functional_extensionality_dep.
3704-
exists ((prod_topo_apply i)@^-1` A); split;[|split] => //.
3705-
apply: clopen_comp => //; exact: prod_topo_apply_continuous.
3703+
by apply/existsNP=> W; exact/xneqy/functional_extensionality_dep.
3704+
exists (prod_topo_apply i @^-1` A); split;[|split] => //.
3705+
by apply: clopen_comp => //; exact: prod_topo_apply_continuous.
37063706
Qed.
37073707

37083708
Lemma totally_disconnected_discrete {T} :
@@ -4862,31 +4862,30 @@ Definition fct_pseudoMetricType_mixin :=
48624862
Canonical fct_pseudoMetricType := PseudoMetricType (T -> U) fct_pseudoMetricType_mixin.
48634863
End fct_PseudoMetric.
48644864

4865-
Lemma compact_second_countable {R : realType} {T : pseudoMetricType R} :
4865+
Lemma compact_second_countable {R : realType} {T : pseudoMetricType R} :
48664866
compact [set: T] -> second_countable T.
48674867
Proof.
4868-
have npos : forall n, ((0:R) < (n.+1%:R^-1))%R by [].
4869-
pose f : nat -> T -> (set T) := fun n z => (ball z (PosNum (npos n))%:num)^°.
4870-
move=> cmpt; have h : forall n, finSubCover [set: T] (f n) [set: T].
4871-
move=> n; rewrite compact_cover in cmpt; apply: cmpt.
4872-
by move=> z _; rewrite /f; exact: open_interior.
4873-
by move=> z _; exists z => //; rewrite /f/interior; exact: nbhsx_ballx.
4874-
pose h' := fun n => (cid (iffLR (exists2P _ _) (h n))).
4875-
pose h'' := fun n => projT1 (h' n).
4876-
pose B := \bigcup_n (f n) @` [set` (h'' n)]; exists B; split.
4868+
pose f n z : set T := (ball z n.+1%:R^-1)^°.
4869+
move=> cmpt; have h n : finSubCover [set: T] (f n) [set: T].
4870+
move: cmpt; rewrite compact_cover; apply.
4871+
by move=> z _; exact: open_interior.
4872+
by move=> z _; exists z => //; exact: (nbhsx_ballx _ n.+1%:R^-1%:pos).
4873+
pose h' n := cid (iffLR (exists2P _ _) (h n)).
4874+
pose h'' n := projT1 (h' n).
4875+
pose B := \bigcup_n (f n) @` [set` h'' n]; exists B; split.
48774876
- apply: bigcup_countable => // n _; apply: finite_set_countable.
4878-
exact/finite_image/ finite_fset.
4879-
- by move=> z [n _ [w wn <-]]; exact: open_interior.
4880-
- move=> x V /nbhs_ballP [] _/posnumP[eps] ballsubV.
4881-
have [//|N] := @ltr_add_invr R 0%R (eps%:num/2) _; rewrite add0r => deleps.
4882-
have [w [wh fx]] : exists w : T, w \in h'' N /\ f N w x.
4877+
exact/finite_image/finite_fset.
4878+
- by move=> _ [n _ [w wn <-]]; exact: open_interior.
4879+
- move=> x V /nbhs_ballP[] _/posnumP[eps] ballsubV.
4880+
have [//|N] := @ltr_add_invr R 0 (eps%:num / 2) _; rewrite add0r => deleps.
4881+
have [w [wh fx]] : exists w : T, w \in h'' N /\ f N w x.
48834882
by have [_ /(_ x) [// | w ? ?]] := projT2 (h' N); exists w.
4884-
exists (f N w); split; first (by exists N); split.
4883+
exists (f N w); split; first by exists N.
48854884
by apply: open_nbhs_nbhs; split => //; exact: open_interior.
4886-
apply: (subset_trans _ ballsubV) => z bz.
4887-
rewrite [_%:num]splitr; apply: (@ball_triangle _ _ w).
4888-
by apply: (le_ball (ltW deleps)); apply/ball_sym; apply: interior_subset.
4889-
by apply: (le_ball (ltW deleps)); apply: interior_subset.
4885+
apply: subset_trans ballsubV => z bz.
4886+
rewrite [_%:num]splitr; apply: (@ball_triangle _ _ w).
4887+
by apply: (le_ball (ltW deleps)); apply/ball_sym; exact: interior_subset.
4888+
by apply: (le_ball (ltW deleps)); exact: interior_subset.
48904889
Qed.
48914890

48924891
(** ** Complete uniform spaces *)

0 commit comments

Comments
 (0)