@@ -852,41 +852,6 @@ Qed.
852852
853853End jordan_decomposition.
854854
855- Section PR_in_progress.
856-
857- Lemma set_eq_le d (rT : porderType d) T (f g : T -> rT) :
858- [set x | f x = g x] = [set x | (f x <= g x)%O] `&` [set x | (f x >= g x)%O].
859- Proof . by apply/seteqP; split => [x/= ->//|x /andP]; rewrite -eq_le =>/eqP. Qed .
860-
861- Local Open Scope ereal_scope.
862- Context d (T : measurableType d) (R : realType).
863-
864- Lemma emeasurable_fun_lt (D : set T) (mD : measurable D) (f g : T -> \bar R) :
865- measurable_fun D f -> measurable_fun D g ->
866- measurable (D `&` [set x | f x < g x]).
867- Proof .
868- move=> mf mg; under eq_set do rewrite -sube_gt0.
869- by apply: emeasurable_fun_o_infty => //; exact: emeasurable_funB.
870- Qed .
871-
872- Lemma emeasurable_fun_le (D : set T) (mD : measurable D) (f g : T -> \bar R) :
873- measurable_fun D f -> measurable_fun D g ->
874- measurable (D `&` [set x | f x <= g x]).
875- Proof .
876- move=> mf mg; under eq_set do rewrite -sube_le0.
877- by apply: emeasurable_fun_infty_c => //; exact: emeasurable_funB.
878- Qed .
879-
880- Lemma emeasurable_fun_eq (D : set T) (mD : measurable D) (f g : T -> \bar R) :
881- measurable_fun D f -> measurable_fun D g ->
882- measurable (D `&` [set x | f x = g x]).
883- Proof .
884- move=> mf mg; rewrite set_eq_le setIIr.
885- by apply: measurableI; apply: emeasurable_fun_le.
886- Qed .
887-
888- End PR_in_progress.
889-
890855(* We put definitions and lemmas used only in the proof of the Radon-Nikodym
891856 theorem as Definition's and Lemma's in the following modules. See
892857 https://staff.aist.go.jp/reynald.affeldt/documents/measure-ppl2023.pdf
0 commit comments