@@ -186,14 +186,15 @@ apply: (@le_lt_trans _ _ (\int[mu]_(x in D) (`|f x| + `|g x|))).
186186by rewrite ge0_integralD //; [exact: lte_add_pinfty| exact: measurableT_comp..].
187187Qed .
188188
189- Lemma integrable_sum (s : seq (T -> \bar R)) :
190- (forall h, h \in s -> mu_int h) -> mu_int (fun x => \sum_(h <- s) h x).
189+ Lemma integrable_sum I (s : seq I) (P : pred I) (h : I -> T -> \bar R) :
190+ (forall i, P i -> mu_int (h i)) ->
191+ mu_int (fun x => \sum_(i <- s | P i) h i x).
191192Proof .
192- elim: s => [_|h s ih hs].
193+ elim: s => [_|i s ih hs].
193194 by under eq_fun do rewrite big_nil; exact: integrable0.
194- under eq_fun do rewrite big_cons; apply: integrableD => // .
195- - by apply: hs; rewrite in_cons eqxx .
196- - by apply: ih => k ks; apply : hs; rewrite in_cons ks orbT .
195+ under eq_fun do rewrite big_cons.
196+ have [Pi|Pi] := boolP (P i); last exact: ih .
197+ by apply: integrableD => //; [exact : hs|exact: ih] .
197198Qed .
198199
199200Lemma integrableB f g : mu_int f -> mu_int g -> mu_int (f \- g).
@@ -622,7 +623,7 @@ Section integralD.
622623Local Open Scope ereal_scope.
623624Context d (T : measurableType d) (R : realType).
624625Variables (mu : {measure set T -> \bar R}) (D : set T) (mD : measurable D).
625- Variables ( f1 f2 : T -> \bar R) .
626+ Variables f1 f2 : T -> \bar R.
626627Hypotheses (if1 : mu.-integrable D f1) (if2 : mu.-integrable D f2).
627628
628629Let mf1 : measurable_fun D f1. Proof . exact: measurable_int if1. Qed .
@@ -681,6 +682,28 @@ Qed.
681682
682683End integralD.
683684
685+ Section integral_sum.
686+ Local Open Scope ereal_scope.
687+ Context d (T : measurableType d) (R : realType).
688+ Variables (mu : {measure set T -> \bar R}) (D : set T) (mD : measurable D).
689+ Variables (I : Type) (f : I -> (T -> \bar R)).
690+ Hypothesis intf : forall n, mu.-integrable D (f n).
691+
692+ Lemma integral_sum (s : seq I) (P : pred I) :
693+ \int[mu]_(x in D) (\sum_(k <- s | P k) f k x) =
694+ \sum_(k <- s | P k) \int[mu]_(x in D) (f k x).
695+ Proof .
696+ elim: s => [|h t ih].
697+ under eq_integral do rewrite big_nil.
698+ by rewrite integral0 big_nil.
699+ rewrite big_cons -ih -integralD//; last exact: integrable_sum.
700+ case: ifPn => Ph.
701+ by apply: eq_integral => x xD; rewrite big_cons Ph.
702+ by apply: eq_integral => x xD; rewrite big_cons/= (negbTE Ph).
703+ Qed .
704+
705+ End integral_sum.
706+
684707Section integralB.
685708Local Open Scope ereal_scope.
686709Context d (T : measurableType d) (R : realType).
0 commit comments