Skip to content

MathExtras: avoid unnecessarily widening types #95426

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Jun 29, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
189 changes: 122 additions & 67 deletions llvm/include/llvm/Support/MathExtras.h
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,22 @@
#include <type_traits>

namespace llvm {
/// Some template parameter helpers to optimize for bitwidth, for functions that
/// take multiple arguments.

// We can't verify signedness, since callers rely on implicit coercions to
// signed/unsigned.
template <typename T, typename U>
using enableif_int =
std::enable_if_t<std::is_integral_v<T> && std::is_integral_v<U>>;

// Use std::common_type_t to widen only up to the widest argument.
template <typename T, typename U, typename = enableif_int<T, U>>
using common_uint =
std::common_type_t<std::make_unsigned_t<T>, std::make_unsigned_t<U>>;
template <typename T, typename U, typename = enableif_int<T, U>>
using common_sint =
std::common_type_t<std::make_signed_t<T>, std::make_signed_t<U>>;

/// Mathematical constants.
namespace numbers {
Expand Down Expand Up @@ -346,7 +362,8 @@ inline unsigned Log2_64_Ceil(uint64_t Value) {

/// A and B are either alignments or offsets. Return the minimum alignment that
/// may be assumed after adding the two together.
constexpr uint64_t MinAlign(uint64_t A, uint64_t B) {
template <typename U, typename V, typename T = common_uint<U, V>>
constexpr T MinAlign(U A, V B) {
// The largest power of 2 that divides both A and B.
//
// Replace "-Value" by "1+~Value" in the following commented code to avoid
Expand All @@ -355,6 +372,11 @@ constexpr uint64_t MinAlign(uint64_t A, uint64_t B) {
return (A | B) & (1 + ~(A | B));
}

/// Fallback when arguments aren't integral.
constexpr uint64_t MinAlign(uint64_t A, uint64_t B) {
return (A | B) & (1 + ~(A | B));
}

/// Returns the next power of two (in 64-bits) that is strictly greater than A.
/// Returns zero on overflow.
constexpr uint64_t NextPowerOf2(uint64_t A) {
Expand All @@ -375,60 +397,17 @@ inline uint64_t PowerOf2Ceil(uint64_t A) {
return UINT64_C(1) << Log2_64_Ceil(A);
}

/// Returns the next integer (mod 2**64) that is greater than or equal to
/// \p Value and is a multiple of \p Align. \p Align must be non-zero.
///
/// Examples:
/// \code
/// alignTo(5, 8) = 8
/// alignTo(17, 8) = 24
/// alignTo(~0LL, 8) = 0
/// alignTo(321, 255) = 510
/// \endcode
///
/// May overflow.
inline uint64_t alignTo(uint64_t Value, uint64_t Align) {
assert(Align != 0u && "Align can't be 0.");
return (Value + Align - 1) / Align * Align;
}

inline uint64_t alignToPowerOf2(uint64_t Value, uint64_t Align) {
assert(Align != 0 && (Align & (Align - 1)) == 0 &&
"Align must be a power of 2");
// Replace unary minus to avoid compilation error on Windows:
// "unary minus operator applied to unsigned type, result still unsigned"
uint64_t negAlign = (~Align) + 1;
return (Value + Align - 1) & negAlign;
}

/// If non-zero \p Skew is specified, the return value will be a minimal integer
/// that is greater than or equal to \p Size and equal to \p A * N + \p Skew for
/// some integer N. If \p Skew is larger than \p A, its value is adjusted to '\p
/// Skew mod \p A'. \p Align must be non-zero.
///
/// Examples:
/// \code
/// alignTo(5, 8, 7) = 7
/// alignTo(17, 8, 1) = 17
/// alignTo(~0LL, 8, 3) = 3
/// alignTo(321, 255, 42) = 552
/// \endcode
inline uint64_t alignTo(uint64_t Value, uint64_t Align, uint64_t Skew) {
assert(Align != 0u && "Align can't be 0.");
Skew %= Align;
return alignTo(Value - Skew, Align) + Skew;
}

/// Returns the next integer (mod 2**64) that is greater than or equal to
/// \p Value and is a multiple of \c Align. \c Align must be non-zero.
template <uint64_t Align> constexpr uint64_t alignTo(uint64_t Value) {
static_assert(Align != 0u, "Align must be non-zero");
return (Value + Align - 1) / Align * Align;
}

/// Returns the integer ceil(Numerator / Denominator). Unsigned version.
/// Guaranteed to never overflow.
inline uint64_t divideCeil(uint64_t Numerator, uint64_t Denominator) {
template <typename U, typename V, typename T = common_uint<U, V>>
constexpr T divideCeil(U Numerator, V Denominator) {
assert(Denominator && "Division by zero");
T Bias = (Numerator != 0);
return (Numerator - Bias) / Denominator + Bias;
}

/// Fallback when arguments aren't integral.
constexpr uint64_t divideCeil(uint64_t Numerator, uint64_t Denominator) {
assert(Denominator && "Division by zero");
uint64_t Bias = (Numerator != 0);
return (Numerator - Bias) / Denominator + Bias;
Expand All @@ -437,12 +416,13 @@ inline uint64_t divideCeil(uint64_t Numerator, uint64_t Denominator) {
/// Returns the integer ceil(Numerator / Denominator). Signed version.
/// Guaranteed to never overflow, unless Numerator is INT64_MIN and Denominator
/// is -1.
inline int64_t divideCeilSigned(int64_t Numerator, int64_t Denominator) {
template <typename U, typename V, typename T = common_sint<U, V>>
constexpr T divideCeilSigned(U Numerator, V Denominator) {
assert(Denominator && "Division by zero");
if (!Numerator)
return 0;
// C's integer division rounds towards 0.
int64_t Bias = (Denominator >= 0 ? 1 : -1);
T Bias = Denominator >= 0 ? 1 : -1;
bool SameSign = (Numerator >= 0) == (Denominator >= 0);
return SameSign ? (Numerator - Bias) / Denominator + 1
: Numerator / Denominator;
Expand All @@ -451,36 +431,111 @@ inline int64_t divideCeilSigned(int64_t Numerator, int64_t Denominator) {
/// Returns the integer floor(Numerator / Denominator). Signed version.
/// Guaranteed to never overflow, unless Numerator is INT64_MIN and Denominator
/// is -1.
inline int64_t divideFloorSigned(int64_t Numerator, int64_t Denominator) {
template <typename U, typename V, typename T = common_sint<U, V>>
constexpr T divideFloorSigned(U Numerator, V Denominator) {
assert(Denominator && "Division by zero");
if (!Numerator)
return 0;
// C's integer division rounds towards 0.
int64_t Bias = Denominator >= 0 ? -1 : 1;
T Bias = Denominator >= 0 ? -1 : 1;
bool SameSign = (Numerator >= 0) == (Denominator >= 0);
return SameSign ? Numerator / Denominator
: (Numerator - Bias) / Denominator - 1;
}

/// Returns the remainder of the Euclidean division of LHS by RHS. Result is
/// always non-negative.
inline int64_t mod(int64_t Numerator, int64_t Denominator) {
template <typename U, typename V, typename T = common_sint<U, V>>
constexpr T mod(U Numerator, V Denominator) {
assert(Denominator >= 1 && "Mod by non-positive number");
int64_t Mod = Numerator % Denominator;
T Mod = Numerator % Denominator;
return Mod < 0 ? Mod + Denominator : Mod;
}

/// Returns (Numerator / Denominator) rounded by round-half-up. Guaranteed to
/// never overflow.
inline uint64_t divideNearest(uint64_t Numerator, uint64_t Denominator) {
template <typename U, typename V, typename T = common_uint<U, V>>
constexpr T divideNearest(U Numerator, V Denominator) {
assert(Denominator && "Division by zero");
uint64_t Mod = Numerator % Denominator;
return (Numerator / Denominator) + (Mod > (Denominator - 1) / 2);
T Mod = Numerator % Denominator;
return (Numerator / Denominator) +
(Mod > (static_cast<T>(Denominator) - 1) / 2);
}

/// Returns the next integer (mod 2**nbits) that is greater than or equal to
/// \p Value and is a multiple of \p Align. \p Align must be non-zero.
///
/// Examples:
/// \code
/// alignTo(5, 8) = 8
/// alignTo(17, 8) = 24
/// alignTo(~0LL, 8) = 0
/// alignTo(321, 255) = 510
/// \endcode
///
/// Will overflow only if result is not representable in T.
template <typename U, typename V, typename T = common_uint<U, V>>
constexpr T alignTo(U Value, V Align) {
assert(Align != 0u && "Align can't be 0.");
T CeilDiv = divideCeil(Value, Align);
return CeilDiv * Align;
}

/// Fallback when arguments aren't integral.
constexpr uint64_t alignTo(uint64_t Value, uint64_t Align) {
assert(Align != 0u && "Align can't be 0.");
uint64_t CeilDiv = divideCeil(Value, Align);
return CeilDiv * Align;
}

constexpr uint64_t alignToPowerOf2(uint64_t Value, uint64_t Align) {
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Any particular reason not to templatize this function?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The callers are depending on implicit widening.

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I would strongly suggest changing the callers not to depend on that, in a separate patch.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I have to change the overflow behavior of alignToPowerOf2 to only overflow when result is not representable in the return type: working on a patch.

assert(Align != 0 && (Align & (Align - 1)) == 0 &&
"Align must be a power of 2");
// Replace unary minus to avoid compilation error on Windows:
// "unary minus operator applied to unsigned type, result still unsigned"
uint64_t NegAlign = (~Align) + 1;
return (Value + Align - 1) & NegAlign;
}

/// If non-zero \p Skew is specified, the return value will be a minimal integer
/// that is greater than or equal to \p Size and equal to \p A * N + \p Skew for
/// some integer N. If \p Skew is larger than \p A, its value is adjusted to '\p
/// Skew mod \p A'. \p Align must be non-zero.
///
/// Examples:
/// \code
/// alignTo(5, 8, 7) = 7
/// alignTo(17, 8, 1) = 17
/// alignTo(~0LL, 8, 3) = 3
/// alignTo(321, 255, 42) = 552
/// \endcode
///
/// May overflow.
template <typename U, typename V, typename W,
typename T = common_uint<common_uint<U, V>, W>>
constexpr T alignTo(U Value, V Align, W Skew) {
assert(Align != 0u && "Align can't be 0.");
Skew %= Align;
return alignTo(Value - Skew, Align) + Skew;
}

/// Returns the largest uint64_t less than or equal to \p Value and is
/// \p Skew mod \p Align. \p Align must be non-zero
inline uint64_t alignDown(uint64_t Value, uint64_t Align, uint64_t Skew = 0) {
/// Returns the next integer (mod 2**nbits) that is greater than or equal to
/// \p Value and is a multiple of \c Align. \c Align must be non-zero.
///
/// Will overflow only if result is not representable in T.
template <auto Align, typename V, typename T = common_uint<decltype(Align), V>>
constexpr T alignTo(V Value) {
static_assert(Align != 0u, "Align must be non-zero");
T CeilDiv = divideCeil(Value, Align);
return CeilDiv * Align;
}

/// Returns the largest unsigned integer less than or equal to \p Value and is
/// \p Skew mod \p Align. \p Align must be non-zero. Guaranteed to never
/// overflow.
template <typename U, typename V, typename W = uint8_t,
typename T = common_uint<common_uint<U, V>, W>>
constexpr T alignDown(U Value, V Align, W Skew = 0) {
assert(Align != 0u && "Align can't be 0.");
Skew %= Align;
return (Value - Skew) / Align * Align + Skew;
Expand Down Expand Up @@ -524,8 +579,8 @@ inline int64_t SignExtend64(uint64_t X, unsigned B) {

/// Subtract two unsigned integers, X and Y, of type T and return the absolute
/// value of the result.
template <typename T>
std::enable_if_t<std::is_unsigned_v<T>, T> AbsoluteDifference(T X, T Y) {
template <typename U, typename V, typename T = common_uint<U, V>>
constexpr T AbsoluteDifference(U X, V Y) {
return X > Y ? (X - Y) : (Y - X);
}

Expand Down
18 changes: 16 additions & 2 deletions llvm/unittests/Support/MathExtrasTest.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -189,21 +189,35 @@ TEST(MathExtras, AlignTo) {
EXPECT_EQ(8u, alignTo(5, 8));
EXPECT_EQ(24u, alignTo(17, 8));
EXPECT_EQ(0u, alignTo(~0LL, 8));
EXPECT_EQ(static_cast<uint64_t>(std::numeric_limits<uint32_t>::max()) + 1,
alignTo(std::numeric_limits<uint32_t>::max(), 2));
EXPECT_EQ(8u, alignTo(5ULL, 8ULL));

EXPECT_EQ(8u, alignTo<8>(5));
EXPECT_EQ(24u, alignTo<8>(17));
EXPECT_EQ(0u, alignTo<8>(~0LL));
EXPECT_EQ(254u,
alignTo<static_cast<uint8_t>(127)>(static_cast<uint8_t>(200)));

EXPECT_EQ(7u, alignTo(5, 8, 7));
EXPECT_EQ(17u, alignTo(17, 8, 1));
EXPECT_EQ(3u, alignTo(~0LL, 8, 3));
EXPECT_EQ(552u, alignTo(321, 255, 42));
EXPECT_EQ(std::numeric_limits<uint32_t>::max(),
alignTo(std::numeric_limits<uint32_t>::max(), 2, 1));

// Overflow.
EXPECT_EQ(0u, alignTo(static_cast<uint8_t>(200), static_cast<uint8_t>(128)));
EXPECT_EQ(0u, alignTo<static_cast<uint8_t>(128)>(static_cast<uint8_t>(200)));
EXPECT_EQ(0u, alignTo(static_cast<uint8_t>(200), static_cast<uint8_t>(128),
static_cast<uint8_t>(0)));
EXPECT_EQ(0u, alignTo(std::numeric_limits<uint32_t>::max(), 2));
}

TEST(MathExtras, AlignToPowerOf2) {
EXPECT_EQ(0u, alignToPowerOf2(0u, 8));
EXPECT_EQ(8u, alignToPowerOf2(5, 8));
EXPECT_EQ(24u, alignToPowerOf2(17, 8));
EXPECT_EQ(0u, alignToPowerOf2(~0LL, 8));
EXPECT_EQ(240u, alignToPowerOf2(240, 16));
EXPECT_EQ(static_cast<uint64_t>(std::numeric_limits<uint32_t>::max()) + 1,
alignToPowerOf2(std::numeric_limits<uint32_t>::max(), 2));
}
Expand Down
Loading