Skip to content

[mlir][SVE] Add an e2e test for vectorization of linalg.matmul #70372

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Oct 27, 2023
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
68 changes: 68 additions & 0 deletions mlir/test/Integration/Dialect/Linalg/CPU/ArmSVE/matmul.mlir
Original file line number Diff line number Diff line change
@@ -0,0 +1,68 @@
// RUN: mlir-opt %s -test-transform-dialect-interpreter -test-transform-dialect-erase-schedule \
// RUN: -one-shot-bufferize -func-bufferize -cse -canonicalize -convert-vector-to-scf -arm-sve-legalize-vector-storage \
// RUN: -convert-vector-to-llvm="enable-arm-sve" -test-lower-to-llvm | \
// RUN: %mcr_aarch64_cmd -e=matmul_f32 -entry-point-result=void --march=aarch64 --mattr="+sve" -shared-libs=%mlir_runner_utils,%mlir_c_runner_utils | \
// RUN: FileCheck %s

func.func @matmul_f32() {
// Matrix dimensions
%K = arith.constant 3 : index
%M = arith.constant 5 : index
%N = arith.constant 15 : index
%c0_f32 = arith.constant 0.0 : f32

// Allocate the matrices
%A_alloc = bufferization.alloc_tensor(%M, %K) : tensor<?x?xf32>
%B_alloc = bufferization.alloc_tensor(%K, %N) : tensor<?x?xf32>
%C_alloc = bufferization.alloc_tensor(%M, %N) : tensor<?x?xf32>

// Initialise the matrices
%pi = arith.constant 3.14 : f32
%A = linalg.fill ins(%pi : f32) outs(%A_alloc : tensor<?x?xf32>) -> tensor<?x?xf32>
%B = linalg.fill ins(%pi : f32) outs(%B_alloc : tensor<?x?xf32>) -> tensor<?x?xf32>
%C_in = linalg.fill ins(%c0_f32 : f32) outs(%C_alloc : tensor<?x?xf32>) -> tensor<?x?xf32>

// Matmul
%C_out = linalg.matmul ins(%A, %B: tensor<?x?xf32>, tensor<?x?xf32>) outs(%C_in: tensor<?x?xf32>) -> tensor<?x?xf32>

// Print and verify the output
// CHECK-LABEL: SVE: START OF TEST OUTPUT
vector.print str "SVE: START OF TEST OUTPUT"

// CHECK-NEXT: Unranked Memref {{.*}} rank = 2 offset = 0 sizes = [5, 15] strides = [15, 1] data =
// CHECK-COUNT-5: [29.5788, 29.5788, 29.5788, 29.5788, 29.5788, 29.5788, 29.5788, 29.5788, 29.5788, 29.5788, 29.5788, 29.5788, 29.5788, 29.5788, 29.5788]
%xf = tensor.cast %C_out : tensor<?x?xf32> to tensor<*xf32>
call @printMemrefF32(%xf) : (tensor<*xf32>) -> ()

// CHECK-NEXT: SVE: END OF TEST OUTPUT
vector.print str "SVE: END OF TEST OUTPUT"

return
}

transform.sequence failures(propagate) {
^bb1(%module_op: !transform.any_op):
// Step 1: Tile
%matmul = transform.structured.match ops{["linalg.matmul"]} in %module_op : (!transform.any_op) -> !transform.any_op
%func_op = get_parent_op %matmul : (!transform.any_op) -> !transform.op<"func.func">
%module_with_tiled_loops, %loops:3 = transform.structured.tile_using_for %matmul [2, [4], 1] : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op, !transform.any_op)

// Step 2: Vectorize
%tiled_matmul = transform.structured.match ops{["linalg.matmul"]} in %module_with_tiled_loops : (!transform.any_op) -> !transform.any_op
transform.structured.vectorize %tiled_matmul vector_sizes [2, [4], 1] : !transform.any_op

// Step 3: Lower vector.multi_reduction to vector.contract (+ some helpful patterns)
transform.apply_patterns to %func_op {
transform.apply_patterns.vector.reduction_to_contract
transform.apply_patterns.vector.transfer_permutation_patterns
transform.apply_patterns.vector.lower_masked_transfers
} : !transform.op<"func.func">

// Step 4: Lower vector.contract to vector.fma
transform.apply_patterns to %func_op {
transform.apply_patterns.vector.lower_contraction lowering_strategy = "outerproduct"
transform.apply_patterns.vector.lower_outerproduct
} : !transform.op<"func.func">
}

func.func private @printMemrefF32(%ptr : tensor<*xf32>)