-
Notifications
You must be signed in to change notification settings - Fork 13.6k
[mlir][tosa] Update value to values for ConstOp and ConstShapeOp #129943
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Conversation
@llvm/pr-subscribers-mlir-tosa @llvm/pr-subscribers-mlir Author: Jerry-Ge (Jerry-Ge) ChangesUpdated the dialect to match TOSA v1.0 specification (https://www.mlplatform.org/tosa/tosa_spec.html#_const) and the lit tests. Patch is 264.83 KiB, truncated to 20.00 KiB below, full version: https://github.com/llvm/llvm-project/pull/129943.diff 25 Files Affected:
diff --git a/mlir/include/mlir/Dialect/Tosa/IR/TosaOps.td b/mlir/include/mlir/Dialect/Tosa/IR/TosaOps.td
index ff83e4072b6c0..d46e992dc36cb 100644
--- a/mlir/include/mlir/Dialect/Tosa/IR/TosaOps.td
+++ b/mlir/include/mlir/Dialect/Tosa/IR/TosaOps.td
@@ -2338,7 +2338,7 @@ def Tosa_RescaleOp: Tosa_Op<"rescale", [Pure,
// Operator: const
//===----------------------------------------------------------------------===//
def Tosa_ConstOp : Tosa_Op<"const", [ConstantLike, Pure,
- AllShapesMatch<["value", "output"]>,
+ AllShapesMatch<["values", "output"]>,
FirstAttrDerivedResultType]> {
let summary = "Constant op.";
@@ -2350,12 +2350,12 @@ def Tosa_ConstOp : Tosa_Op<"const", [ConstantLike, Pure,
```mlir
// Generic form
- %out = "tosa.const"() {value = dense<0> : tensor<2x3xi32>} : () -> tensor<2x3xi32>
+ %out = "tosa.const"() {values = dense<0> : tensor<2x3xi32>} : () -> tensor<2x3xi32>
```
}];
let arguments = (ins
- ElementsAttr:$value
+ ElementsAttr:$values
);
let results = (outs
diff --git a/mlir/lib/Conversion/TosaToArith/TosaToArith.cpp b/mlir/lib/Conversion/TosaToArith/TosaToArith.cpp
index 593dbaa6c6545..5c84b4063da2e 100644
--- a/mlir/lib/Conversion/TosaToArith/TosaToArith.cpp
+++ b/mlir/lib/Conversion/TosaToArith/TosaToArith.cpp
@@ -28,7 +28,7 @@ class ConstOpConverter : public OpRewritePattern<tosa::ConstOp> {
LogicalResult matchAndRewrite(tosa::ConstOp op,
PatternRewriter &rewriter) const final {
- rewriter.replaceOpWithNewOp<arith::ConstantOp>(op, op.getValue());
+ rewriter.replaceOpWithNewOp<arith::ConstantOp>(op, op.getValues());
return success();
}
};
diff --git a/mlir/lib/Dialect/Tosa/IR/TosaCanonicalizations.cpp b/mlir/lib/Dialect/Tosa/IR/TosaCanonicalizations.cpp
index 2c0376134b599..ad8dbe312d6cb 100644
--- a/mlir/lib/Dialect/Tosa/IR/TosaCanonicalizations.cpp
+++ b/mlir/lib/Dialect/Tosa/IR/TosaCanonicalizations.cpp
@@ -882,7 +882,7 @@ OpFoldResult CastOp::fold(FoldAdaptor adaptor) {
return {};
}
-OpFoldResult ConstOp::fold(FoldAdaptor adaptor) { return getValueAttr(); }
+OpFoldResult ConstOp::fold(FoldAdaptor adaptor) { return getValuesAttr(); }
OpFoldResult ConstShapeOp::fold(FoldAdaptor adaptor) { return getValueAttr(); }
diff --git a/mlir/lib/Dialect/Tosa/IR/TosaOps.cpp b/mlir/lib/Dialect/Tosa/IR/TosaOps.cpp
index 11d25e657f904..4ad47173348e1 100644
--- a/mlir/lib/Dialect/Tosa/IR/TosaOps.cpp
+++ b/mlir/lib/Dialect/Tosa/IR/TosaOps.cpp
@@ -352,7 +352,7 @@ static LogicalResult verifyConvOp(T op) {
LogicalResult tosa::ConstOp::verify() {
- auto attrType = llvm::dyn_cast<TensorType>(getValueAttr().getType());
+ auto attrType = llvm::dyn_cast<TensorType>(getValuesAttr().getType());
auto outputType = llvm::dyn_cast<TensorType>(getOutput().getType());
if (!attrType || !outputType) {
@@ -3037,7 +3037,7 @@ LogicalResult tosa::ConstShapeOp::verify() {
auto valuesRank = getValue().getType().getRank();
if (valuesRank != 1)
return emitOpError("expect elements in attribute value with rank 1");
- // check that number of elements in value attr equal to rank of result shape
+ // check that number of elements in values attr equal to rank of result shape
auto count = getValue().getNumElements();
auto rank = (cast<tosa::shapeType>(getResult().getType())).getRank();
if (!(count == rank || (count == 1 && rank == 0))) {
diff --git a/mlir/lib/Dialect/Tosa/Transforms/TosaFolders.cpp b/mlir/lib/Dialect/Tosa/Transforms/TosaFolders.cpp
index 1f5a906153cd9..9a45d83c61737 100644
--- a/mlir/lib/Dialect/Tosa/Transforms/TosaFolders.cpp
+++ b/mlir/lib/Dialect/Tosa/Transforms/TosaFolders.cpp
@@ -363,7 +363,7 @@ struct ReduceConstantOptimization : public OpRewritePattern<OperationType> {
return rewriter.notifyMatchFailure(op, "result type shape is not static");
auto reductionAxis = op.getAxis();
- const auto denseElementsAttr = constOp.getValue();
+ const auto denseElementsAttr = constOp.getValues();
const auto shapedOldElementsValues =
cast<ShapedType>(denseElementsAttr.getType());
diff --git a/mlir/lib/Dialect/Tosa/Transforms/TosaReduceTransposes.cpp b/mlir/lib/Dialect/Tosa/Transforms/TosaReduceTransposes.cpp
index 36f511fa616d8..585e8b1d7f2cd 100644
--- a/mlir/lib/Dialect/Tosa/Transforms/TosaReduceTransposes.cpp
+++ b/mlir/lib/Dialect/Tosa/Transforms/TosaReduceTransposes.cpp
@@ -418,7 +418,7 @@ std::optional<Value> TosaReduceTransposes::buildMappedToValue(
std::optional<Value> TosaReduceTransposes::buildMappedToValue(
ConstOp constOp, const DenseMap<Value, Value> &valuesMap,
IRRewriter &rewriter, ArrayRef<int32_t> hoistedPerms) {
- auto denseAttr = llvm::dyn_cast<DenseElementsAttr>(constOp.getValue());
+ auto denseAttr = llvm::dyn_cast<DenseElementsAttr>(constOp.getValues());
if (!denseAttr)
return std::nullopt;
auto maybeNewDenseAttr = transposeDenseAttribute(denseAttr, hoistedPerms);
diff --git a/mlir/test/Conversion/TosaToArith/tosa-to-arith.mlir b/mlir/test/Conversion/TosaToArith/tosa-to-arith.mlir
index c4f82d53af982..14f811727c456 100644
--- a/mlir/test/Conversion/TosaToArith/tosa-to-arith.mlir
+++ b/mlir/test/Conversion/TosaToArith/tosa-to-arith.mlir
@@ -4,7 +4,7 @@
// CHECK-LABEL: func @const_test
func.func @const_test() -> (tensor<i32>) {
// CHECK: [[C3:%.+]] = arith.constant dense<3> : tensor<i32>
- %result = "tosa.const"() {value = dense<3> : tensor<i32>} : () -> tensor<i32>
+ %result = "tosa.const"() {values = dense<3> : tensor<i32>} : () -> tensor<i32>
// CHECK: return [[C3]]
return %result : tensor<i32>
diff --git a/mlir/test/Conversion/TosaToLinalg/tosa-to-linalg-named.mlir b/mlir/test/Conversion/TosaToLinalg/tosa-to-linalg-named.mlir
index d4afc468eeea4..5bb4a3bddb51b 100644
--- a/mlir/test/Conversion/TosaToLinalg/tosa-to-linalg-named.mlir
+++ b/mlir/test/Conversion/TosaToLinalg/tosa-to-linalg-named.mlir
@@ -290,8 +290,8 @@ func.func @avg_pool_f32(%arg0: tensor<1x6x34x62xf32>) -> (tensor<1x5x33x62xf32>)
// CHECK: %[[FLT:.+]] = arith.sitofp %[[CAST]]
// CHECK: %[[DIV:.+]] = arith.divf %[[IN]], %[[FLT]]
// CHECK: linalg.yield %[[DIV]]
- %input_zp = "tosa.const"() <{value = dense<0.0> : tensor<1xf32>}> : () -> tensor<1xf32>
- %output_zp = "tosa.const"() <{value = dense<0.0> : tensor<1xf32>}> : () -> tensor<1xf32>
+ %input_zp = "tosa.const"() <{values = dense<0.0> : tensor<1xf32>}> : () -> tensor<1xf32>
+ %output_zp = "tosa.const"() <{values = dense<0.0> : tensor<1xf32>}> : () -> tensor<1xf32>
%0 = tosa.avg_pool2d %arg0, %input_zp, %output_zp {acc_type = f32, pad = array<i64: 1, 1, 1, 1>, kernel = array<i64: 4, 4>, stride = array<i64: 1, 1>} : (tensor<1x6x34x62xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x5x33x62xf32>
return %0 : tensor<1x5x33x62xf32>
}
@@ -377,8 +377,8 @@ func.func @avg_pool_f16_f32acc(%arg0: tensor<1x6x34x62xf16>) -> (tensor<1x5x33x6
// CHECK: %[[DIV:.+]] = arith.divf %[[IN]], %[[FLT]]
// CHECK: %[[TRUNC:.+]] = arith.truncf %[[DIV]]
// CHECK: linalg.yield %[[TRUNC]]
- %input_zp = "tosa.const"() <{value = dense<0.0> : tensor<1xf16>}> : () -> tensor<1xf16>
- %output_zp = "tosa.const"() <{value = dense<0.0> : tensor<1xf16>}> : () -> tensor<1xf16>
+ %input_zp = "tosa.const"() <{values = dense<0.0> : tensor<1xf16>}> : () -> tensor<1xf16>
+ %output_zp = "tosa.const"() <{values = dense<0.0> : tensor<1xf16>}> : () -> tensor<1xf16>
%0 = tosa.avg_pool2d %arg0, %input_zp, %output_zp {acc_type = f32, pad = array<i64: 1, 1, 1, 1>, kernel = array<i64: 4, 4>, stride = array<i64: 1, 1>} : (tensor<1x6x34x62xf16>, tensor<1xf16>, tensor<1xf16>) -> tensor<1x5x33x62xf16>
return %0 : tensor<1x5x33x62xf16>
}
@@ -420,8 +420,8 @@ func.func @avg_pool_i8(%arg0: tensor<1x6x34x62xi8>) -> (tensor<1x5x33x62xi8>) {
// CHECK: %[[CLAMP:.+]] = arith.minsi %[[CMAX]], %[[LOW]]
// CHECK: %[[TRUNC:.+]] = arith.trunci %[[CLAMP]]
// CHECK: linalg.yield %[[TRUNC]]
- %input_zp = "tosa.const"() <{value = dense<0> : tensor<1xi8>}> : () -> tensor<1xi8>
- %output_zp = "tosa.const"() <{value = dense<0> : tensor<1xi8>}> : () -> tensor<1xi8>
+ %input_zp = "tosa.const"() <{values = dense<0> : tensor<1xi8>}> : () -> tensor<1xi8>
+ %output_zp = "tosa.const"() <{values = dense<0> : tensor<1xi8>}> : () -> tensor<1xi8>
%0 = tosa.avg_pool2d %arg0, %input_zp, %output_zp {acc_type = i32, pad = array<i64: 1, 1, 1, 1>, kernel = array<i64: 4, 4>, stride = array<i64: 1, 1>} : (tensor<1x6x34x62xi8>, tensor<1xi8>, tensor<1xi8>) -> tensor<1x5x33x62xi8>
return %0 : tensor<1x5x33x62xi8>
}
@@ -445,8 +445,8 @@ func.func @avg_pool_dyn(%arg0: tensor<?x6x34x62xf32>) -> (tensor<?x5x33x62xf32>)
// CHECK-SAME: outs(%[[FILL]] : tensor<?x5x33x62xf32>) -> tensor<?x5x33x62xf32>
// CHECK: %[[EMPTY:.+]] = tensor.empty(%[[BATCH]]) : tensor<?x5x33x62xf32>
// CHECK: %[[GENERIC:.+]] = linalg.generic
- %input_zp = "tosa.const"() <{value = dense<0.0> : tensor<1xf32>}> : () -> tensor<1xf32>
- %output_zp = "tosa.const"() <{value = dense<0.0> : tensor<1xf32>}> : () -> tensor<1xf32>
+ %input_zp = "tosa.const"() <{values = dense<0.0> : tensor<1xf32>}> : () -> tensor<1xf32>
+ %output_zp = "tosa.const"() <{values = dense<0.0> : tensor<1xf32>}> : () -> tensor<1xf32>
%0 = tosa.avg_pool2d %arg0, %input_zp, %output_zp {acc_type = f32, pad = array<i64: 1, 1, 1, 1>, kernel = array<i64: 4, 4>, stride = array<i64: 1, 1>} : (tensor<?x6x34x62xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<?x5x33x62xf32>
return %0 : tensor<?x5x33x62xf32>
}
@@ -460,8 +460,8 @@ func.func @avg_pool_dyn(%arg0: tensor<?x6x34x62xf32>) -> (tensor<?x5x33x62xf32>)
func.func @conv2d_scalar_bias_f32(%input: tensor<1x49x42x27xf32>, %weights: tensor<28x3x3x27xf32>, %bias: tensor<1xf32>) -> () {
// CHECK: %[[INIT:.+]] = tensor.empty() : tensor<1x45x40x28xf32>
// CHECK: %[[BROADCAST:.+]] = linalg.generic {indexing_maps = [#[[$MAP1]], #[[$MAP2]]], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%arg2 : tensor<1xf32>) outs(%[[INIT]] : tensor<1x45x40x28xf32>) {
- %input_zp = "tosa.const"() <{value = dense<0.0> : tensor<1xf32>}> : () -> tensor<1xf32>
- %weight_zp = "tosa.const"() <{value = dense<0.0> : tensor<1xf32>}> : () -> tensor<1xf32>
+ %input_zp = "tosa.const"() <{values = dense<0.0> : tensor<1xf32>}> : () -> tensor<1xf32>
+ %weight_zp = "tosa.const"() <{values = dense<0.0> : tensor<1xf32>}> : () -> tensor<1xf32>
%0 = tosa.conv2d %input, %weights, %bias, %input_zp, %weight_zp {acc_type = f32, pad = array<i64: 0, 0, 0, 0>, stride = array<i64: 1, 1>, dilation = array<i64: 2, 1>} : (tensor<1x49x42x27xf32>, tensor<28x3x3x27xf32>, tensor<1xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x45x40x28xf32>
return
}
@@ -482,8 +482,8 @@ func.func @conv2d_i8(%input: tensor<1x49x42x27xi8>, %weights: tensor<28x1x1x27xi
// CHECK: linalg.conv_2d_nhwc_fhwc {dilations = dense<[2, 1]> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins(%arg0, %arg1 : tensor<1x49x42x27xi8>, tensor<28x1x1x27xi8>) outs(%[[BROADCAST]] : tensor<1x49x42x28xi32>) -> tensor<1x49x42x28xi32>
// HWCF: linalg.conv_2d_nhwc_hwcf {dilations = dense<[2, 1]> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins(%arg0, %[[TRANSPOSE]] : tensor<1x49x42x27xi8>, tensor<1x1x27x28xi8>) outs(%{{[a-zA-Z0-9_]*}} : tensor<1x49x42x28xi32>) -> tensor<1x49x42x28xi32>
- %input_zp = "tosa.const"() <{value = dense<0> : tensor<1xi8>}> : () -> tensor<1xi8>
- %weight_zp = "tosa.const"() <{value = dense<0> : tensor<1xi8>}> : () -> tensor<1xi8>
+ %input_zp = "tosa.const"() <{values = dense<0> : tensor<1xi8>}> : () -> tensor<1xi8>
+ %weight_zp = "tosa.const"() <{values = dense<0> : tensor<1xi8>}> : () -> tensor<1xi8>
%0 = tosa.conv2d %input, %weights, %bias, %input_zp, %weight_zp {acc_type = i32, dilation = array<i64: 2, 1>, pad = array<i64: 0, 0, 0, 0>, stride = array<i64: 1, 1>} : (tensor<1x49x42x27xi8>, tensor<28x1x1x27xi8>, tensor<28xi8>, tensor<1xi8>, tensor<1xi8>) -> tensor<1x49x42x28xi32>
return
}
@@ -504,8 +504,8 @@ func.func @conv2d_f32(%input: tensor<1x49x42x27xf32>, %weights: tensor<28x3x3x27
// CHECK: linalg.conv_2d_nhwc_fhwc {dilations = dense<[2, 1]> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins(%arg0, %arg1 : tensor<1x49x42x27xf32>, tensor<28x3x3x27xf32>) outs(%[[BROADCAST]] : tensor<1x45x40x28xf32>) -> tensor<1x45x40x28xf32>
// HWCF: linalg.conv_2d_nhwc_hwcf {dilations = dense<[2, 1]> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins(%arg0, %[[TRANSPOSE]] : tensor<1x49x42x27xf32>, tensor<3x3x27x28xf32>) outs(%{{[a-zA-Z0-9_]*}} : tensor<1x45x40x28xf32>
- %input_zp = "tosa.const"() <{value = dense<0.0> : tensor<1xf32>}> : () -> tensor<1xf32>
- %weight_zp = "tosa.const"() <{value = dense<0.0> : tensor<1xf32>}> : () -> tensor<1xf32>
+ %input_zp = "tosa.const"() <{values = dense<0.0> : tensor<1xf32>}> : () -> tensor<1xf32>
+ %weight_zp = "tosa.const"() <{values = dense<0.0> : tensor<1xf32>}> : () -> tensor<1xf32>
%0 = tosa.conv2d %input, %weights, %bias, %input_zp, %weight_zp {acc_type = f32, pad = array<i64: 0, 0, 0, 0>, stride = array<i64: 1, 1>, dilation = array<i64: 2, 1>} : (tensor<1x49x42x27xf32>, tensor<28x3x3x27xf32>, tensor<28xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x45x40x28xf32>
return
}
@@ -525,8 +525,8 @@ func.func @conv2d_dyn(%input: tensor<?x49x42x27xf32>, %weights: tensor<28x3x3x27
// CHECK: linalg.yield %[[IN]] : f32
// CHECK: } -> tensor<?x45x40x28xf32>
// CHECK: linalg.conv_2d_nhwc_fhwc {dilations = dense<[2, 1]> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins(%arg0, %arg1 : tensor<?x49x42x27xf32>, tensor<28x3x3x27xf32>) outs(%[[BROADCAST]] : tensor<?x45x40x28xf32>) -> tensor<?x45x40x28xf32>
- %input_zp = "tosa.const"() <{value = dense<0.0> : tensor<1xf32>}> : () -> tensor<1xf32>
- %weight_zp = "tosa.const"() <{value = dense<0.0> : tensor<1xf32>}> : () -> tensor<1xf32>
+ %input_zp = "tosa.const"() <{values = dense<0.0> : tensor<1xf32>}> : () -> tensor<1xf32>
+ %weight_zp = "tosa.const"() <{values = dense<0.0> : tensor<1xf32>}> : () -> tensor<1xf32>
%0 = tosa.conv2d %input, %weights, %bias, %input_zp, %weight_zp {acc_type = f32, pad = array<i64: 0, 0, 0, 0>, stride = array<i64: 1, 1>, dilation = array<i64: 2, 1>} : (tensor<?x49x42x27xf32>, tensor<28x3x3x27xf32>, tensor<28xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<?x45x40x28xf32>
return
}
@@ -583,8 +583,8 @@ func.func @conv2d_dyn_w_h(%input: tensor<1x?x?x27xf32>, %weights: tensor<28x3x3x
// CHECK: } -> tensor<1x?x?x28xf32>
// CHECK: linalg.conv_2d_nhwc_fhwc {dilations = dense<[2, 1]> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins(%arg0, %arg1 : tensor<1x?x?x27xf32>, tensor<28x3x3x27xf32>) outs(%[[BROADCAST]] : tensor<1x?x?x28xf32>) -> tensor<1x?x?x28xf32>
- %input_zp = "tosa.const"() <{value = dense<0.0> : tensor<1xf32>}> : () -> tensor<1xf32>
- %weight_zp = "tosa.const"() <{value = dense<0.0> : tensor<1xf32>}> : () -> tensor<1xf32>
+ %input_zp = "tosa.const"() <{values = dense<0.0> : tensor<1xf32>}> : () -> tensor<1xf32>
+ %weight_zp = "tosa.const"() <{values = dense<0.0> : tensor<1xf32>}> : () -> tensor<1xf32>
%0 = tosa.conv2d %input, %weights, %bias, %input_zp, %weight_zp {acc_type = f32, pad = array<i64: 0, 0, 0, 0>, stride = array<i64: 1, 1>, dilation = array<i64: 2, 1>} : (tensor<1x?x?x27xf32>, tensor<28x3x3x27xf32>, tensor<28xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x?x?x28xf32>
return
}
@@ -608,8 +608,8 @@ func.func @conv2d_dyn_output(%input: tensor<2x6x5x4xf32>, %weights: tensor<4x3x3
// linalg.yield %[[ADD]] : f32
// } -> tensor<?x4x3x4xf32>
- %input_zp = "tosa.const"() <{value = dense<0.0> : tensor<1xf32>}> : () -> tensor<1xf32>
- %weight_zp = "tosa.const"() <{value = dense<0.0> : tensor<1xf32>}> : () -> tensor<1xf32>
+ %input_zp = "tosa.const"() <{values = dense<0.0> : tensor<1xf32>}> : () -> tensor<1xf32>
+ %weight_zp = "tosa.const"() <{values = dense<0.0> : tensor<1xf32>}> : () -> tensor<1xf32>
%0 = tosa.conv2d %input, %weights, %bias, %input_zp, %weight_zp {acc_type = f32, dilation = array<i64: 1, 1>, pad = array<i64: 0, 0, 0, 0>, stride = array<i64: 1, 1>} : (tensor<2x6x5x4xf32>, tensor<4x3x3x4xf32>, tensor<4xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<?x4x3x4xf32>
return
}
@@ -622,8 +622,8 @@ func.func @conv2d_padded_f32(%input: tensor<1x47x40x28xf32>, %weights: tensor<28
// CHECK: tensor.pad %arg0 low[0, 1, 1, 0] high[0, 1, 1, 0]
// CHECK: tensor.yield %[[C0]]
// CHECK: linalg.conv_2d_nhwc_fhwc
- %input_zp = "tosa.const"() <{value = dense<0.0> : tensor<1xf32>}> : () -> tensor<1xf32>
- %weight_zp = "tosa.const"() <{value = dense<0.0> : tensor<1xf32>}> : () -> tensor<1xf32>
+ %input_zp = "tosa.const"() <{values = dense<0.0> : tensor<1xf32>}> : () -> tensor<1xf32>
+ %weight_zp = "tosa.const"() <{values = dense<0.0> : tensor<1xf32>}> : () -> tensor<1xf32>
%0 = tosa.conv2d %input, %weights, %bias, %input_zp, %weight_zp {acc_type = f32, pad = array<i64: 1, 1, 1, 1>, stride = array<i64: 1, 1>, dilation = array<i64: 2, 1>}
: (tensor<1x47x40x28xf32>, tensor<28x3x3x28xf32>, tensor<28xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x45x40x28xf32>
return
@@ -637,8 +637,8 @@ func.func @conv2d_quant(%arg0 : tensor<1x12x12x1xi8>, %arg1 : tensor<1024x3x3x1x
// CHECK: tensor.pad %arg0 low[0, 1, 1, 0] high[0, 1, 1, 0]
// CHECK: tensor.yield %[[C22]]
// CHECK: linalg.conv_2d_nhwc_fhwc_q
- %input_zp = "tosa.const"() <{value = dense<-22> : tensor<1xi8>}> : () -> tensor<1xi8>
- %weight_zp = "tosa.const"() <{value = dense<42> : tensor<1xi8>}> : () -> tensor<1xi8>
+ %input_zp = "tosa.const"() <{values = dense<-22> : tensor<1xi8>}> : () -> tensor<1xi8>
+ %weight_zp = "tosa.const"() <{values = dense<42> : tensor<1xi8>}> : () -> tensor<1xi8>
%0 = tosa.conv2d %arg0, %arg1, %arg2, %input_zp, %weight_zp {acc_type = i32, dilation = array<i64: 1, 1>, pad = array<i64: 1, 1, 1, 1>, stride = array<i64: 1, 1>}
: (tensor<1x12x12x1xi8>, tensor<1024x3x3x1xi8>, tensor<1024xi32>, tensor<1xi8>, tensor<1xi8>) -> tensor<1x12x12x1024xi32>
return
@@ -662,8 +662,8 @@ func.func @depthwise_conv(%arg0 : tensor<1x7x5x3xf32>, %arg1 : tensor<3x1x3x11xf
// CHECK: [[ADD:%.+]] = arith.addf %[[ARG3]], %[[ARG4]] : f32
// CHECK: linalg.yield [[ADD]] : f32
// CHECK: } -> tensor<1x5x5x33xf32>
- %input_zp = "tosa.const"() <{value = dense<0.0> : tensor<1xf32>}> : () -> tensor<1xf32>
- %weight_zp = "tosa.const"() <{value = dense<0.0> : tensor<1xf32>}> : () -> tensor<1xf32>
+ %input_zp = "tosa.const"() <{values = dense<0.0> : tensor<1xf32>}> : () -> tensor<1xf32>
+ %weight_zp = "tosa.const"() <{values = dense<0.0> : tensor<1xf32>}> : () -> tensor<1xf32>
%2 = tosa.depthwise_conv2d %arg0, %arg1, %arg2, %input_zp, %weight_zp {acc_type = f32, pad = array<i64: 0, 0, 0, 0>, stride = array<i64: 1, 1>, dilation = array<i64: 1, 1> } : (tensor<1x7x5x3xf32>, tensor<3x1x3x11xf32>, tensor<33xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x5x5x33xf32>
return
}
@@ -680,8 +680,8 @@ func.func @depthwise_conv_scalar_bias(%arg0 : tensor<1x7x5x3xf32>, %arg1 : tenso
// CHECK: [[ADD:%.+]] = arith.addf %[[ARG3]], %[[ARG4]] : f32
// CHECK: linalg.yield [[ADD]] : f32
// CHECK: } -> tensor<1x5x5x33xf32>
- %input_zp = "tosa.const"() <{value = dense<0.0> : tensor<1xf32>}> : () -> tensor<1xf32>
- %weight_zp = "tosa.const"() <{value = dense<0.0> : tensor<1xf32>}> : () -> tensor<1xf32>
+ %input_zp = "tosa.const"() <{values = dense<0.0> : tensor<1xf32>}> : () -> tensor<1xf32>
+ %weight_zp = "tosa.const"() <{values = dense<0.0> : tensor<1xf32>}> : () -> tensor<1xf32>
%2 = tosa.depthwise_conv2d %arg0, %arg1, %arg2, %input_zp, %weight_zp {acc_type = f32, pad = array<i64: 0, 0, 0, 0>, stride = array<i64: 1, 1>, dilation = array<i64: 1, 1> } : (tensor<1x7x5x3xf32>, tensor<3x1x3x11xf32>, tensor<1xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x5x5x33xf32>
return
}
@@ -706,8 +706,8 @@ func.func @depthwise_conv_dyn(%arg0 : tensor<?x7x5x3xf32>, %arg1 : tensor<3x1x3x
// CHECK: %[[ADD:.+]] = arith.addf %[[ARG3]], %[[ARG4]] : f32
// CHECK: linalg.yield %[[ADD]] : f32
// CHECK: } -> tensor<?x5x5x33xf32>
- %input_zp = "tosa.const"() <{value = dense<0.0> : tensor<1xf32>}> : () -> tensor<1xf32>
- %weight_zp = "tosa.const"() <{value = dense<0.0> : tensor<1xf32>}> ...
[truncated]
|
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
LGTM! - probably a good idea to retrigger CI before merging
Signed-off-by: Jerry Ge <[email protected]> Change-Id: I59501284d8612038f819002b250ed4d86a0b05cd
Signed-off-by: Jerry Ge <[email protected]> Change-Id: Ia31f233f4e051eb7a565c26f496a02cb17cf9828
…m#129943) Updated the dialect to match TOSA v1.0 specification for ConstOp and ConstShapeOp (https://www.mlplatform.org/tosa/tosa_spec.html#_const). Also updated lit tests --------- Signed-off-by: Jerry Ge <[email protected]>
Updated the dialect to match TOSA v1.0 specification for ConstOp and ConstShapeOp (https://www.mlplatform.org/tosa/tosa_spec.html#_const).
Also updated lit tests