-
Notifications
You must be signed in to change notification settings - Fork 13.5k
[LV]Split store-load forward distance analysis from other checks, NFC #121156
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[LV]Split store-load forward distance analysis from other checks, NFC #121156
Conversation
Created using spr 1.3.5
@llvm/pr-subscribers-llvm-transforms @llvm/pr-subscribers-backend-risc-v Author: Alexey Bataev (alexey-bataev) ChangesThe patch improves/fixes existing max safe distance analysis. It fixes Part of #100755 Full diff: https://github.com/llvm/llvm-project/pull/121156.diff 7 Files Affected:
diff --git a/llvm/include/llvm/Analysis/LoopAccessAnalysis.h b/llvm/include/llvm/Analysis/LoopAccessAnalysis.h
index a35bc7402d1a89..d5cf959fb04ec2 100644
--- a/llvm/include/llvm/Analysis/LoopAccessAnalysis.h
+++ b/llvm/include/llvm/Analysis/LoopAccessAnalysis.h
@@ -216,6 +216,12 @@ class MemoryDepChecker {
return MaxSafeVectorWidthInBits;
}
+ /// Return safe power-of-2 number of elements, which do not prevent store-load
+ /// forwarding and safe to operate simultaneously.
+ std::optional<uint64_t> getStoreLoadForwardSafeVF() const {
+ return MaxStoreLoadForwardSafeVF;
+ }
+
/// In same cases when the dependency check fails we can still
/// vectorize the loop with a dynamic array access check.
bool shouldRetryWithRuntimeCheck() const {
@@ -304,6 +310,10 @@ class MemoryDepChecker {
/// restrictive.
uint64_t MaxSafeVectorWidthInBits = -1U;
+ /// Maximum number of elements (power-of-2 and non-power-of-2), which do not
+ /// prevent store-load forwarding and safe to operate simultaneously.
+ std::optional<uint64_t> MaxStoreLoadForwardSafeVF;
+
/// If we see a non-constant dependence distance we can still try to
/// vectorize this loop with runtime checks.
bool FoundNonConstantDistanceDependence = false;
diff --git a/llvm/include/llvm/Transforms/Vectorize/LoopVectorizationLegality.h b/llvm/include/llvm/Transforms/Vectorize/LoopVectorizationLegality.h
index fbe80eddbae07a..462c11d841b841 100644
--- a/llvm/include/llvm/Transforms/Vectorize/LoopVectorizationLegality.h
+++ b/llvm/include/llvm/Transforms/Vectorize/LoopVectorizationLegality.h
@@ -412,6 +412,12 @@ class LoopVectorizationLegality {
return getUncountableExitBlocks()[0];
}
+ /// Return safe power-of-2 number of elements, which do not prevent store-load
+ /// forwarding and safe to operate simultaneously.
+ std::optional<unsigned> getMaxStoreLoadForwardSafeVFPowerOf2() const {
+ return LAI->getDepChecker().getStoreLoadForwardSafeVF();
+ }
+
/// Returns true if vector representation of the instruction \p I
/// requires mask.
bool isMaskRequired(const Instruction *I) const {
diff --git a/llvm/lib/Analysis/LoopAccessAnalysis.cpp b/llvm/lib/Analysis/LoopAccessAnalysis.cpp
index 2c75d5625cb66d..764600c3adae7a 100644
--- a/llvm/lib/Analysis/LoopAccessAnalysis.cpp
+++ b/llvm/lib/Analysis/LoopAccessAnalysis.cpp
@@ -1752,31 +1752,34 @@ bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance,
// cause any slowdowns.
const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize;
// Maximum vector factor.
- uint64_t MaxVFWithoutSLForwardIssues = std::min(
- VectorizerParams::MaxVectorWidth * TypeByteSize, MinDepDistBytes);
+ uint64_t MaxVFWithoutSLForwardIssuesPowerOf2 = std::min(
+ VectorizerParams::MaxVectorWidth * TypeByteSize,
+ MaxStoreLoadForwardSafeVF.value_or(std::numeric_limits<uint64_t>::max()));
// Compute the smallest VF at which the store and load would be misaligned.
- for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues;
- VF *= 2) {
+ for (uint64_t VF = 2 * TypeByteSize;
+ VF <= MaxVFWithoutSLForwardIssuesPowerOf2; VF *= 2) {
// If the number of vector iteration between the store and the load are
// small we could incur conflicts.
if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) {
- MaxVFWithoutSLForwardIssues = (VF >> 1);
+ MaxVFWithoutSLForwardIssuesPowerOf2 = (VF >> 1);
break;
}
}
- if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) {
+ if (MaxVFWithoutSLForwardIssuesPowerOf2 < 2 * TypeByteSize) {
LLVM_DEBUG(
dbgs() << "LAA: Distance " << Distance
<< " that could cause a store-load forwarding conflict\n");
return true;
}
- if (MaxVFWithoutSLForwardIssues < MinDepDistBytes &&
- MaxVFWithoutSLForwardIssues !=
- VectorizerParams::MaxVectorWidth * TypeByteSize)
- MinDepDistBytes = MaxVFWithoutSLForwardIssues;
+ if (MaxVFWithoutSLForwardIssuesPowerOf2 < 2 * TypeByteSize)
+ MaxStoreLoadForwardSafeVF = 1;
+ else if (MaxVFWithoutSLForwardIssuesPowerOf2 < MaxStoreLoadForwardSafeVF &&
+ MaxVFWithoutSLForwardIssuesPowerOf2 !=
+ VectorizerParams::MaxVectorWidth * TypeByteSize)
+ MaxStoreLoadForwardSafeVF = MaxVFWithoutSLForwardIssuesPowerOf2;
return false;
}
diff --git a/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp b/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp
index cb828b738d310f..367a011323b51b 100644
--- a/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp
+++ b/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp
@@ -1436,8 +1436,10 @@ class LoopVectorizationCostModel {
/// Selects and saves TailFoldingStyle for 2 options - if IV update may
/// overflow or not.
/// \param IsScalableVF true if scalable vector factors enabled.
+ /// \param TailFoldPowOf2 true if tail folding with power-of-2
+ /// safe distance can be enabled.
/// \param UserIC User specific interleave count.
- void setTailFoldingStyles(bool IsScalableVF, unsigned UserIC) {
+ void setTailFoldingStyles(bool IsScalableVF, bool TailFoldPowOf2, unsigned UserIC) {
assert(!ChosenTailFoldingStyle && "Tail folding must not be selected yet.");
if (!Legal->canFoldTailByMasking()) {
ChosenTailFoldingStyle =
@@ -1446,24 +1448,37 @@ class LoopVectorizationCostModel {
}
if (!ForceTailFoldingStyle.getNumOccurrences()) {
- ChosenTailFoldingStyle = std::make_pair(
- TTI.getPreferredTailFoldingStyle(/*IVUpdateMayOverflow=*/true),
- TTI.getPreferredTailFoldingStyle(/*IVUpdateMayOverflow=*/false));
+ if (!TailFoldPowOf2)
+ ChosenTailFoldingStyle =
+ std::make_pair(TailFoldingStyle::None, TailFoldingStyle::None);
+ else
+ ChosenTailFoldingStyle = std::make_pair(
+ TTI.getPreferredTailFoldingStyle(/*IVUpdateMayOverflow=*/true),
+ TTI.getPreferredTailFoldingStyle(/*IVUpdateMayOverflow=*/false));
return;
}
// Set styles when forced.
ChosenTailFoldingStyle = std::make_pair(ForceTailFoldingStyle.getValue(),
ForceTailFoldingStyle.getValue());
- if (ForceTailFoldingStyle != TailFoldingStyle::DataWithEVL)
+ if (ForceTailFoldingStyle != TailFoldingStyle::DataWithEVL) {
+ if (!TailFoldPowOf2)
+ ChosenTailFoldingStyle =
+ std::make_pair(TailFoldingStyle::None, TailFoldingStyle::None);
return;
+ }
// Override forced styles if needed.
// FIXME: use actual opcode/data type for analysis here.
// FIXME: Investigate opportunity for fixed vector factor.
- bool EVLIsLegal = UserIC <= 1 &&
+ bool EVLIsLegal = UserIC <= 1 && IsScalableVF &&
TTI.hasActiveVectorLength(0, nullptr, Align()) &&
!EnableVPlanNativePath;
if (!EVLIsLegal) {
+ if (!TailFoldPowOf2) {
+ ChosenTailFoldingStyle =
+ std::make_pair(TailFoldingStyle::None, TailFoldingStyle::None);
+ return;
+ }
// If for some reason EVL mode is unsupported, fallback to
// DataWithoutLaneMask to try to vectorize the loop with folded tail
// in a generic way.
@@ -4016,11 +4031,15 @@ FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF(
// It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
// the memory accesses that is most restrictive (involved in the smallest
// dependence distance).
- unsigned MaxSafeElements =
- llvm::bit_floor(Legal->getMaxSafeVectorWidthInBits() / WidestType);
+ unsigned MaxSafeElements = Legal->getMaxSafeVectorWidthInBits() / WidestType;
+ if (Legal->isSafeForAnyVectorWidth())
+ MaxSafeElements = bit_ceil(MaxSafeElements);
+ unsigned MaxSafeElementsPowerOf2 = bit_floor(std::gcd(
+ MaxSafeElements, Legal->getMaxStoreLoadForwardSafeVFPowerOf2().value_or(
+ 1ULL << countr_zero(MaxSafeElements))));
+ auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElementsPowerOf2);
+ auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElementsPowerOf2);
- auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements);
- auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements);
if (!Legal->isSafeForAnyVectorWidth())
this->MaxSafeElements = MaxSafeElements;
@@ -4233,13 +4252,11 @@ LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) {
LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
return MaxFactors;
}
+ MaxPowerOf2RuntimeVF.reset();
}
- // If we don't know the precise trip count, or if the trip count that we
- // found modulo the vectorization factor is not zero, try to fold the tail
- // by masking.
- // FIXME: look for a smaller MaxVF that does divide TC rather than masking.
- setTailFoldingStyles(MaxFactors.ScalableVF.isScalable(), UserIC);
+ setTailFoldingStyles(MaxFactors.ScalableVF.isScalable(),
+ !MaxPowerOf2RuntimeVF.has_value(), UserIC);
if (foldTailByMasking()) {
if (getTailFoldingStyle() == TailFoldingStyle::DataWithEVL) {
LLVM_DEBUG(
@@ -4258,6 +4275,12 @@ LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) {
return MaxFactors;
}
+ if (MaxPowerOf2RuntimeVF) {
+ // Accept MaxFixedVF if we do not have a tail.
+ LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
+ return MaxFactors;
+ }
+
// If there was a tail-folding hint/switch, but we can't fold the tail by
// masking, fallback to a vectorization with a scalar epilogue.
if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
diff --git a/llvm/test/Transforms/LoopVectorize/RISCV/riscv-vector-reverse.ll b/llvm/test/Transforms/LoopVectorize/RISCV/riscv-vector-reverse.ll
index eb60c24393df99..cbdd9a06497655 100644
--- a/llvm/test/Transforms/LoopVectorize/RISCV/riscv-vector-reverse.ll
+++ b/llvm/test/Transforms/LoopVectorize/RISCV/riscv-vector-reverse.ll
@@ -21,7 +21,7 @@ define void @vector_reverse_i64(ptr nocapture noundef writeonly %A, ptr nocaptur
; CHECK-NEXT: LV: Found trip count: 0
; CHECK-NEXT: LV: Found maximum trip count: 4294967295
; CHECK-NEXT: LV: Scalable vectorization is available
-; CHECK-NEXT: LV: The max safe fixed VF is: 67108864.
+; CHECK-NEXT: LV: The max safe fixed VF is: 134217728.
; CHECK-NEXT: LV: The max safe scalable VF is: vscale x 4294967295.
; CHECK-NEXT: LV: Found uniform instruction: %cmp = icmp ugt i64 %indvars.iv, 1
; CHECK-NEXT: LV: Found uniform instruction: %arrayidx = getelementptr inbounds i32, ptr %B, i64 %idxprom
@@ -268,7 +268,7 @@ define void @vector_reverse_f32(ptr nocapture noundef writeonly %A, ptr nocaptur
; CHECK-NEXT: LV: Found trip count: 0
; CHECK-NEXT: LV: Found maximum trip count: 4294967295
; CHECK-NEXT: LV: Scalable vectorization is available
-; CHECK-NEXT: LV: The max safe fixed VF is: 67108864.
+; CHECK-NEXT: LV: The max safe fixed VF is: 134217728.
; CHECK-NEXT: LV: The max safe scalable VF is: vscale x 4294967295.
; CHECK-NEXT: LV: Found uniform instruction: %cmp = icmp ugt i64 %indvars.iv, 1
; CHECK-NEXT: LV: Found uniform instruction: %arrayidx = getelementptr inbounds float, ptr %B, i64 %idxprom
diff --git a/llvm/test/Transforms/LoopVectorize/memdep-fold-tail.ll b/llvm/test/Transforms/LoopVectorize/memdep-fold-tail.ll
index d1ad7e3f4fc0d8..ea592c1e1063ac 100644
--- a/llvm/test/Transforms/LoopVectorize/memdep-fold-tail.ll
+++ b/llvm/test/Transforms/LoopVectorize/memdep-fold-tail.ll
@@ -24,57 +24,9 @@ target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f3
define void @maxvf3() {
; CHECK-LABEL: @maxvf3(
; CHECK-NEXT: entry:
-; CHECK-NEXT: br i1 false, label [[SCALAR_PH:%.*]], label [[VECTOR_PH:%.*]]
-; CHECK: vector.ph:
-; CHECK-NEXT: br label [[VECTOR_BODY:%.*]]
-; CHECK: vector.body:
-; CHECK-NEXT: [[INDEX:%.*]] = phi i32 [ 0, [[VECTOR_PH]] ], [ [[INDEX_NEXT:%.*]], [[PRED_STORE_CONTINUE6:%.*]] ]
-; CHECK-NEXT: [[VEC_IND:%.*]] = phi <2 x i32> [ <i32 0, i32 1>, [[VECTOR_PH]] ], [ [[VEC_IND_NEXT:%.*]], [[PRED_STORE_CONTINUE6]] ]
-; CHECK-NEXT: [[TMP0:%.*]] = icmp ule <2 x i32> [[VEC_IND]], splat (i32 14)
-; CHECK-NEXT: [[TMP1:%.*]] = extractelement <2 x i1> [[TMP0]], i32 0
-; CHECK-NEXT: br i1 [[TMP1]], label [[PRED_STORE_IF:%.*]], label [[PRED_STORE_CONTINUE:%.*]]
-; CHECK: pred.store.if:
-; CHECK-NEXT: [[TMP2:%.*]] = add i32 [[INDEX]], 0
-; CHECK-NEXT: [[TMP3:%.*]] = getelementptr inbounds [18 x i8], ptr @a, i32 0, i32 [[TMP2]]
-; CHECK-NEXT: store i8 69, ptr [[TMP3]], align 8
-; CHECK-NEXT: br label [[PRED_STORE_CONTINUE]]
-; CHECK: pred.store.continue:
-; CHECK-NEXT: [[TMP4:%.*]] = extractelement <2 x i1> [[TMP0]], i32 1
-; CHECK-NEXT: br i1 [[TMP4]], label [[PRED_STORE_IF1:%.*]], label [[PRED_STORE_CONTINUE2:%.*]]
-; CHECK: pred.store.if1:
-; CHECK-NEXT: [[TMP5:%.*]] = add i32 [[INDEX]], 1
-; CHECK-NEXT: [[TMP6:%.*]] = getelementptr inbounds [18 x i8], ptr @a, i32 0, i32 [[TMP5]]
-; CHECK-NEXT: store i8 69, ptr [[TMP6]], align 8
-; CHECK-NEXT: br label [[PRED_STORE_CONTINUE2]]
-; CHECK: pred.store.continue2:
-; CHECK-NEXT: [[TMP7:%.*]] = add nuw nsw <2 x i32> splat (i32 3), [[VEC_IND]]
-; CHECK-NEXT: [[TMP8:%.*]] = extractelement <2 x i1> [[TMP0]], i32 0
-; CHECK-NEXT: br i1 [[TMP8]], label [[PRED_STORE_IF3:%.*]], label [[PRED_STORE_CONTINUE4:%.*]]
-; CHECK: pred.store.if3:
-; CHECK-NEXT: [[TMP9:%.*]] = extractelement <2 x i32> [[TMP7]], i32 0
-; CHECK-NEXT: [[TMP10:%.*]] = getelementptr inbounds [18 x i8], ptr @a, i32 0, i32 [[TMP9]]
-; CHECK-NEXT: store i8 7, ptr [[TMP10]], align 8
-; CHECK-NEXT: br label [[PRED_STORE_CONTINUE4]]
-; CHECK: pred.store.continue4:
-; CHECK-NEXT: [[TMP11:%.*]] = extractelement <2 x i1> [[TMP0]], i32 1
-; CHECK-NEXT: br i1 [[TMP11]], label [[PRED_STORE_IF5:%.*]], label [[PRED_STORE_CONTINUE6]]
-; CHECK: pred.store.if5:
-; CHECK-NEXT: [[TMP12:%.*]] = extractelement <2 x i32> [[TMP7]], i32 1
-; CHECK-NEXT: [[TMP13:%.*]] = getelementptr inbounds [18 x i8], ptr @a, i32 0, i32 [[TMP12]]
-; CHECK-NEXT: store i8 7, ptr [[TMP13]], align 8
-; CHECK-NEXT: br label [[PRED_STORE_CONTINUE6]]
-; CHECK: pred.store.continue6:
-; CHECK-NEXT: [[INDEX_NEXT]] = add nuw i32 [[INDEX]], 2
-; CHECK-NEXT: [[VEC_IND_NEXT]] = add <2 x i32> [[VEC_IND]], splat (i32 2)
-; CHECK-NEXT: [[TMP14:%.*]] = icmp eq i32 [[INDEX_NEXT]], 16
-; CHECK-NEXT: br i1 [[TMP14]], label [[MIDDLE_BLOCK:%.*]], label [[VECTOR_BODY]], !llvm.loop [[LOOP0:![0-9]+]]
-; CHECK: middle.block:
-; CHECK-NEXT: br i1 true, label [[FOR_END:%.*]], label [[SCALAR_PH]]
-; CHECK: scalar.ph:
-; CHECK-NEXT: [[BC_RESUME_VAL:%.*]] = phi i32 [ 16, [[MIDDLE_BLOCK]] ], [ 0, [[ENTRY:%.*]] ]
; CHECK-NEXT: br label [[FOR_BODY:%.*]]
; CHECK: for.body:
-; CHECK-NEXT: [[J:%.*]] = phi i32 [ [[BC_RESUME_VAL]], [[SCALAR_PH]] ], [ [[J_NEXT:%.*]], [[FOR_BODY]] ]
+; CHECK-NEXT: [[J:%.*]] = phi i32 [ 0, [[ENTRY:%.*]] ], [ [[J_NEXT:%.*]], [[FOR_BODY]] ]
; CHECK-NEXT: [[AJ:%.*]] = getelementptr inbounds [18 x i8], ptr @a, i32 0, i32 [[J]]
; CHECK-NEXT: store i8 69, ptr [[AJ]], align 8
; CHECK-NEXT: [[JP3:%.*]] = add nuw nsw i32 3, [[J]]
@@ -82,7 +34,7 @@ define void @maxvf3() {
; CHECK-NEXT: store i8 7, ptr [[AJP3]], align 8
; CHECK-NEXT: [[J_NEXT]] = add nuw nsw i32 [[J]], 1
; CHECK-NEXT: [[EXITCOND:%.*]] = icmp eq i32 [[J_NEXT]], 15
-; CHECK-NEXT: br i1 [[EXITCOND]], label [[FOR_END]], label [[FOR_BODY]], !llvm.loop [[LOOP3:![0-9]+]]
+; CHECK-NEXT: br i1 [[EXITCOND]], label [[FOR_END:%.*]], label [[FOR_BODY]], !llvm.loop [[LOOP0:![0-9]+]]
; CHECK: for.end:
; CHECK-NEXT: ret void
;
diff --git a/llvm/test/Transforms/LoopVectorize/memdep.ll b/llvm/test/Transforms/LoopVectorize/memdep.ll
index b891b4312f18d3..28cf3b61b2554a 100644
--- a/llvm/test/Transforms/LoopVectorize/memdep.ll
+++ b/llvm/test/Transforms/LoopVectorize/memdep.ll
@@ -226,7 +226,7 @@ for.end:
;Check the new calculation of the maximum safe distance in bits which can be vectorized.
;The previous behavior did not take account that the stride was 2.
-;Therefore the maxVF was computed as 8 instead of 4, as the dependence distance here is 6 iterations, given by |N-(N-12)|/2.
+;Therefore the maxVF was computed as 8 instead of 2, as the dependence distance here is 6 iterations, given by |N-(N-12)|/2.
;#define M 32
;#define N 2 * M
@@ -242,7 +242,7 @@ for.end:
;}
; RIGHTVF-LABEL: @pr34283
-; RIGHTVF: <4 x i64>
+; RIGHTVF: <2 x i64>
; WRONGVF-LABLE: @pr34283
; WRONGVF-NOT: <8 x i64>
|
@llvm/pr-subscribers-vectorizers Author: Alexey Bataev (alexey-bataev) ChangesThe patch improves/fixes existing max safe distance analysis. It fixes Part of #100755 Full diff: https://github.com/llvm/llvm-project/pull/121156.diff 7 Files Affected:
diff --git a/llvm/include/llvm/Analysis/LoopAccessAnalysis.h b/llvm/include/llvm/Analysis/LoopAccessAnalysis.h
index a35bc7402d1a89..d5cf959fb04ec2 100644
--- a/llvm/include/llvm/Analysis/LoopAccessAnalysis.h
+++ b/llvm/include/llvm/Analysis/LoopAccessAnalysis.h
@@ -216,6 +216,12 @@ class MemoryDepChecker {
return MaxSafeVectorWidthInBits;
}
+ /// Return safe power-of-2 number of elements, which do not prevent store-load
+ /// forwarding and safe to operate simultaneously.
+ std::optional<uint64_t> getStoreLoadForwardSafeVF() const {
+ return MaxStoreLoadForwardSafeVF;
+ }
+
/// In same cases when the dependency check fails we can still
/// vectorize the loop with a dynamic array access check.
bool shouldRetryWithRuntimeCheck() const {
@@ -304,6 +310,10 @@ class MemoryDepChecker {
/// restrictive.
uint64_t MaxSafeVectorWidthInBits = -1U;
+ /// Maximum number of elements (power-of-2 and non-power-of-2), which do not
+ /// prevent store-load forwarding and safe to operate simultaneously.
+ std::optional<uint64_t> MaxStoreLoadForwardSafeVF;
+
/// If we see a non-constant dependence distance we can still try to
/// vectorize this loop with runtime checks.
bool FoundNonConstantDistanceDependence = false;
diff --git a/llvm/include/llvm/Transforms/Vectorize/LoopVectorizationLegality.h b/llvm/include/llvm/Transforms/Vectorize/LoopVectorizationLegality.h
index fbe80eddbae07a..462c11d841b841 100644
--- a/llvm/include/llvm/Transforms/Vectorize/LoopVectorizationLegality.h
+++ b/llvm/include/llvm/Transforms/Vectorize/LoopVectorizationLegality.h
@@ -412,6 +412,12 @@ class LoopVectorizationLegality {
return getUncountableExitBlocks()[0];
}
+ /// Return safe power-of-2 number of elements, which do not prevent store-load
+ /// forwarding and safe to operate simultaneously.
+ std::optional<unsigned> getMaxStoreLoadForwardSafeVFPowerOf2() const {
+ return LAI->getDepChecker().getStoreLoadForwardSafeVF();
+ }
+
/// Returns true if vector representation of the instruction \p I
/// requires mask.
bool isMaskRequired(const Instruction *I) const {
diff --git a/llvm/lib/Analysis/LoopAccessAnalysis.cpp b/llvm/lib/Analysis/LoopAccessAnalysis.cpp
index 2c75d5625cb66d..764600c3adae7a 100644
--- a/llvm/lib/Analysis/LoopAccessAnalysis.cpp
+++ b/llvm/lib/Analysis/LoopAccessAnalysis.cpp
@@ -1752,31 +1752,34 @@ bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance,
// cause any slowdowns.
const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize;
// Maximum vector factor.
- uint64_t MaxVFWithoutSLForwardIssues = std::min(
- VectorizerParams::MaxVectorWidth * TypeByteSize, MinDepDistBytes);
+ uint64_t MaxVFWithoutSLForwardIssuesPowerOf2 = std::min(
+ VectorizerParams::MaxVectorWidth * TypeByteSize,
+ MaxStoreLoadForwardSafeVF.value_or(std::numeric_limits<uint64_t>::max()));
// Compute the smallest VF at which the store and load would be misaligned.
- for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues;
- VF *= 2) {
+ for (uint64_t VF = 2 * TypeByteSize;
+ VF <= MaxVFWithoutSLForwardIssuesPowerOf2; VF *= 2) {
// If the number of vector iteration between the store and the load are
// small we could incur conflicts.
if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) {
- MaxVFWithoutSLForwardIssues = (VF >> 1);
+ MaxVFWithoutSLForwardIssuesPowerOf2 = (VF >> 1);
break;
}
}
- if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) {
+ if (MaxVFWithoutSLForwardIssuesPowerOf2 < 2 * TypeByteSize) {
LLVM_DEBUG(
dbgs() << "LAA: Distance " << Distance
<< " that could cause a store-load forwarding conflict\n");
return true;
}
- if (MaxVFWithoutSLForwardIssues < MinDepDistBytes &&
- MaxVFWithoutSLForwardIssues !=
- VectorizerParams::MaxVectorWidth * TypeByteSize)
- MinDepDistBytes = MaxVFWithoutSLForwardIssues;
+ if (MaxVFWithoutSLForwardIssuesPowerOf2 < 2 * TypeByteSize)
+ MaxStoreLoadForwardSafeVF = 1;
+ else if (MaxVFWithoutSLForwardIssuesPowerOf2 < MaxStoreLoadForwardSafeVF &&
+ MaxVFWithoutSLForwardIssuesPowerOf2 !=
+ VectorizerParams::MaxVectorWidth * TypeByteSize)
+ MaxStoreLoadForwardSafeVF = MaxVFWithoutSLForwardIssuesPowerOf2;
return false;
}
diff --git a/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp b/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp
index cb828b738d310f..367a011323b51b 100644
--- a/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp
+++ b/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp
@@ -1436,8 +1436,10 @@ class LoopVectorizationCostModel {
/// Selects and saves TailFoldingStyle for 2 options - if IV update may
/// overflow or not.
/// \param IsScalableVF true if scalable vector factors enabled.
+ /// \param TailFoldPowOf2 true if tail folding with power-of-2
+ /// safe distance can be enabled.
/// \param UserIC User specific interleave count.
- void setTailFoldingStyles(bool IsScalableVF, unsigned UserIC) {
+ void setTailFoldingStyles(bool IsScalableVF, bool TailFoldPowOf2, unsigned UserIC) {
assert(!ChosenTailFoldingStyle && "Tail folding must not be selected yet.");
if (!Legal->canFoldTailByMasking()) {
ChosenTailFoldingStyle =
@@ -1446,24 +1448,37 @@ class LoopVectorizationCostModel {
}
if (!ForceTailFoldingStyle.getNumOccurrences()) {
- ChosenTailFoldingStyle = std::make_pair(
- TTI.getPreferredTailFoldingStyle(/*IVUpdateMayOverflow=*/true),
- TTI.getPreferredTailFoldingStyle(/*IVUpdateMayOverflow=*/false));
+ if (!TailFoldPowOf2)
+ ChosenTailFoldingStyle =
+ std::make_pair(TailFoldingStyle::None, TailFoldingStyle::None);
+ else
+ ChosenTailFoldingStyle = std::make_pair(
+ TTI.getPreferredTailFoldingStyle(/*IVUpdateMayOverflow=*/true),
+ TTI.getPreferredTailFoldingStyle(/*IVUpdateMayOverflow=*/false));
return;
}
// Set styles when forced.
ChosenTailFoldingStyle = std::make_pair(ForceTailFoldingStyle.getValue(),
ForceTailFoldingStyle.getValue());
- if (ForceTailFoldingStyle != TailFoldingStyle::DataWithEVL)
+ if (ForceTailFoldingStyle != TailFoldingStyle::DataWithEVL) {
+ if (!TailFoldPowOf2)
+ ChosenTailFoldingStyle =
+ std::make_pair(TailFoldingStyle::None, TailFoldingStyle::None);
return;
+ }
// Override forced styles if needed.
// FIXME: use actual opcode/data type for analysis here.
// FIXME: Investigate opportunity for fixed vector factor.
- bool EVLIsLegal = UserIC <= 1 &&
+ bool EVLIsLegal = UserIC <= 1 && IsScalableVF &&
TTI.hasActiveVectorLength(0, nullptr, Align()) &&
!EnableVPlanNativePath;
if (!EVLIsLegal) {
+ if (!TailFoldPowOf2) {
+ ChosenTailFoldingStyle =
+ std::make_pair(TailFoldingStyle::None, TailFoldingStyle::None);
+ return;
+ }
// If for some reason EVL mode is unsupported, fallback to
// DataWithoutLaneMask to try to vectorize the loop with folded tail
// in a generic way.
@@ -4016,11 +4031,15 @@ FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF(
// It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
// the memory accesses that is most restrictive (involved in the smallest
// dependence distance).
- unsigned MaxSafeElements =
- llvm::bit_floor(Legal->getMaxSafeVectorWidthInBits() / WidestType);
+ unsigned MaxSafeElements = Legal->getMaxSafeVectorWidthInBits() / WidestType;
+ if (Legal->isSafeForAnyVectorWidth())
+ MaxSafeElements = bit_ceil(MaxSafeElements);
+ unsigned MaxSafeElementsPowerOf2 = bit_floor(std::gcd(
+ MaxSafeElements, Legal->getMaxStoreLoadForwardSafeVFPowerOf2().value_or(
+ 1ULL << countr_zero(MaxSafeElements))));
+ auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElementsPowerOf2);
+ auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElementsPowerOf2);
- auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements);
- auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements);
if (!Legal->isSafeForAnyVectorWidth())
this->MaxSafeElements = MaxSafeElements;
@@ -4233,13 +4252,11 @@ LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) {
LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
return MaxFactors;
}
+ MaxPowerOf2RuntimeVF.reset();
}
- // If we don't know the precise trip count, or if the trip count that we
- // found modulo the vectorization factor is not zero, try to fold the tail
- // by masking.
- // FIXME: look for a smaller MaxVF that does divide TC rather than masking.
- setTailFoldingStyles(MaxFactors.ScalableVF.isScalable(), UserIC);
+ setTailFoldingStyles(MaxFactors.ScalableVF.isScalable(),
+ !MaxPowerOf2RuntimeVF.has_value(), UserIC);
if (foldTailByMasking()) {
if (getTailFoldingStyle() == TailFoldingStyle::DataWithEVL) {
LLVM_DEBUG(
@@ -4258,6 +4275,12 @@ LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) {
return MaxFactors;
}
+ if (MaxPowerOf2RuntimeVF) {
+ // Accept MaxFixedVF if we do not have a tail.
+ LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
+ return MaxFactors;
+ }
+
// If there was a tail-folding hint/switch, but we can't fold the tail by
// masking, fallback to a vectorization with a scalar epilogue.
if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
diff --git a/llvm/test/Transforms/LoopVectorize/RISCV/riscv-vector-reverse.ll b/llvm/test/Transforms/LoopVectorize/RISCV/riscv-vector-reverse.ll
index eb60c24393df99..cbdd9a06497655 100644
--- a/llvm/test/Transforms/LoopVectorize/RISCV/riscv-vector-reverse.ll
+++ b/llvm/test/Transforms/LoopVectorize/RISCV/riscv-vector-reverse.ll
@@ -21,7 +21,7 @@ define void @vector_reverse_i64(ptr nocapture noundef writeonly %A, ptr nocaptur
; CHECK-NEXT: LV: Found trip count: 0
; CHECK-NEXT: LV: Found maximum trip count: 4294967295
; CHECK-NEXT: LV: Scalable vectorization is available
-; CHECK-NEXT: LV: The max safe fixed VF is: 67108864.
+; CHECK-NEXT: LV: The max safe fixed VF is: 134217728.
; CHECK-NEXT: LV: The max safe scalable VF is: vscale x 4294967295.
; CHECK-NEXT: LV: Found uniform instruction: %cmp = icmp ugt i64 %indvars.iv, 1
; CHECK-NEXT: LV: Found uniform instruction: %arrayidx = getelementptr inbounds i32, ptr %B, i64 %idxprom
@@ -268,7 +268,7 @@ define void @vector_reverse_f32(ptr nocapture noundef writeonly %A, ptr nocaptur
; CHECK-NEXT: LV: Found trip count: 0
; CHECK-NEXT: LV: Found maximum trip count: 4294967295
; CHECK-NEXT: LV: Scalable vectorization is available
-; CHECK-NEXT: LV: The max safe fixed VF is: 67108864.
+; CHECK-NEXT: LV: The max safe fixed VF is: 134217728.
; CHECK-NEXT: LV: The max safe scalable VF is: vscale x 4294967295.
; CHECK-NEXT: LV: Found uniform instruction: %cmp = icmp ugt i64 %indvars.iv, 1
; CHECK-NEXT: LV: Found uniform instruction: %arrayidx = getelementptr inbounds float, ptr %B, i64 %idxprom
diff --git a/llvm/test/Transforms/LoopVectorize/memdep-fold-tail.ll b/llvm/test/Transforms/LoopVectorize/memdep-fold-tail.ll
index d1ad7e3f4fc0d8..ea592c1e1063ac 100644
--- a/llvm/test/Transforms/LoopVectorize/memdep-fold-tail.ll
+++ b/llvm/test/Transforms/LoopVectorize/memdep-fold-tail.ll
@@ -24,57 +24,9 @@ target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f3
define void @maxvf3() {
; CHECK-LABEL: @maxvf3(
; CHECK-NEXT: entry:
-; CHECK-NEXT: br i1 false, label [[SCALAR_PH:%.*]], label [[VECTOR_PH:%.*]]
-; CHECK: vector.ph:
-; CHECK-NEXT: br label [[VECTOR_BODY:%.*]]
-; CHECK: vector.body:
-; CHECK-NEXT: [[INDEX:%.*]] = phi i32 [ 0, [[VECTOR_PH]] ], [ [[INDEX_NEXT:%.*]], [[PRED_STORE_CONTINUE6:%.*]] ]
-; CHECK-NEXT: [[VEC_IND:%.*]] = phi <2 x i32> [ <i32 0, i32 1>, [[VECTOR_PH]] ], [ [[VEC_IND_NEXT:%.*]], [[PRED_STORE_CONTINUE6]] ]
-; CHECK-NEXT: [[TMP0:%.*]] = icmp ule <2 x i32> [[VEC_IND]], splat (i32 14)
-; CHECK-NEXT: [[TMP1:%.*]] = extractelement <2 x i1> [[TMP0]], i32 0
-; CHECK-NEXT: br i1 [[TMP1]], label [[PRED_STORE_IF:%.*]], label [[PRED_STORE_CONTINUE:%.*]]
-; CHECK: pred.store.if:
-; CHECK-NEXT: [[TMP2:%.*]] = add i32 [[INDEX]], 0
-; CHECK-NEXT: [[TMP3:%.*]] = getelementptr inbounds [18 x i8], ptr @a, i32 0, i32 [[TMP2]]
-; CHECK-NEXT: store i8 69, ptr [[TMP3]], align 8
-; CHECK-NEXT: br label [[PRED_STORE_CONTINUE]]
-; CHECK: pred.store.continue:
-; CHECK-NEXT: [[TMP4:%.*]] = extractelement <2 x i1> [[TMP0]], i32 1
-; CHECK-NEXT: br i1 [[TMP4]], label [[PRED_STORE_IF1:%.*]], label [[PRED_STORE_CONTINUE2:%.*]]
-; CHECK: pred.store.if1:
-; CHECK-NEXT: [[TMP5:%.*]] = add i32 [[INDEX]], 1
-; CHECK-NEXT: [[TMP6:%.*]] = getelementptr inbounds [18 x i8], ptr @a, i32 0, i32 [[TMP5]]
-; CHECK-NEXT: store i8 69, ptr [[TMP6]], align 8
-; CHECK-NEXT: br label [[PRED_STORE_CONTINUE2]]
-; CHECK: pred.store.continue2:
-; CHECK-NEXT: [[TMP7:%.*]] = add nuw nsw <2 x i32> splat (i32 3), [[VEC_IND]]
-; CHECK-NEXT: [[TMP8:%.*]] = extractelement <2 x i1> [[TMP0]], i32 0
-; CHECK-NEXT: br i1 [[TMP8]], label [[PRED_STORE_IF3:%.*]], label [[PRED_STORE_CONTINUE4:%.*]]
-; CHECK: pred.store.if3:
-; CHECK-NEXT: [[TMP9:%.*]] = extractelement <2 x i32> [[TMP7]], i32 0
-; CHECK-NEXT: [[TMP10:%.*]] = getelementptr inbounds [18 x i8], ptr @a, i32 0, i32 [[TMP9]]
-; CHECK-NEXT: store i8 7, ptr [[TMP10]], align 8
-; CHECK-NEXT: br label [[PRED_STORE_CONTINUE4]]
-; CHECK: pred.store.continue4:
-; CHECK-NEXT: [[TMP11:%.*]] = extractelement <2 x i1> [[TMP0]], i32 1
-; CHECK-NEXT: br i1 [[TMP11]], label [[PRED_STORE_IF5:%.*]], label [[PRED_STORE_CONTINUE6]]
-; CHECK: pred.store.if5:
-; CHECK-NEXT: [[TMP12:%.*]] = extractelement <2 x i32> [[TMP7]], i32 1
-; CHECK-NEXT: [[TMP13:%.*]] = getelementptr inbounds [18 x i8], ptr @a, i32 0, i32 [[TMP12]]
-; CHECK-NEXT: store i8 7, ptr [[TMP13]], align 8
-; CHECK-NEXT: br label [[PRED_STORE_CONTINUE6]]
-; CHECK: pred.store.continue6:
-; CHECK-NEXT: [[INDEX_NEXT]] = add nuw i32 [[INDEX]], 2
-; CHECK-NEXT: [[VEC_IND_NEXT]] = add <2 x i32> [[VEC_IND]], splat (i32 2)
-; CHECK-NEXT: [[TMP14:%.*]] = icmp eq i32 [[INDEX_NEXT]], 16
-; CHECK-NEXT: br i1 [[TMP14]], label [[MIDDLE_BLOCK:%.*]], label [[VECTOR_BODY]], !llvm.loop [[LOOP0:![0-9]+]]
-; CHECK: middle.block:
-; CHECK-NEXT: br i1 true, label [[FOR_END:%.*]], label [[SCALAR_PH]]
-; CHECK: scalar.ph:
-; CHECK-NEXT: [[BC_RESUME_VAL:%.*]] = phi i32 [ 16, [[MIDDLE_BLOCK]] ], [ 0, [[ENTRY:%.*]] ]
; CHECK-NEXT: br label [[FOR_BODY:%.*]]
; CHECK: for.body:
-; CHECK-NEXT: [[J:%.*]] = phi i32 [ [[BC_RESUME_VAL]], [[SCALAR_PH]] ], [ [[J_NEXT:%.*]], [[FOR_BODY]] ]
+; CHECK-NEXT: [[J:%.*]] = phi i32 [ 0, [[ENTRY:%.*]] ], [ [[J_NEXT:%.*]], [[FOR_BODY]] ]
; CHECK-NEXT: [[AJ:%.*]] = getelementptr inbounds [18 x i8], ptr @a, i32 0, i32 [[J]]
; CHECK-NEXT: store i8 69, ptr [[AJ]], align 8
; CHECK-NEXT: [[JP3:%.*]] = add nuw nsw i32 3, [[J]]
@@ -82,7 +34,7 @@ define void @maxvf3() {
; CHECK-NEXT: store i8 7, ptr [[AJP3]], align 8
; CHECK-NEXT: [[J_NEXT]] = add nuw nsw i32 [[J]], 1
; CHECK-NEXT: [[EXITCOND:%.*]] = icmp eq i32 [[J_NEXT]], 15
-; CHECK-NEXT: br i1 [[EXITCOND]], label [[FOR_END]], label [[FOR_BODY]], !llvm.loop [[LOOP3:![0-9]+]]
+; CHECK-NEXT: br i1 [[EXITCOND]], label [[FOR_END:%.*]], label [[FOR_BODY]], !llvm.loop [[LOOP0:![0-9]+]]
; CHECK: for.end:
; CHECK-NEXT: ret void
;
diff --git a/llvm/test/Transforms/LoopVectorize/memdep.ll b/llvm/test/Transforms/LoopVectorize/memdep.ll
index b891b4312f18d3..28cf3b61b2554a 100644
--- a/llvm/test/Transforms/LoopVectorize/memdep.ll
+++ b/llvm/test/Transforms/LoopVectorize/memdep.ll
@@ -226,7 +226,7 @@ for.end:
;Check the new calculation of the maximum safe distance in bits which can be vectorized.
;The previous behavior did not take account that the stride was 2.
-;Therefore the maxVF was computed as 8 instead of 4, as the dependence distance here is 6 iterations, given by |N-(N-12)|/2.
+;Therefore the maxVF was computed as 8 instead of 2, as the dependence distance here is 6 iterations, given by |N-(N-12)|/2.
;#define M 32
;#define N 2 * M
@@ -242,7 +242,7 @@ for.end:
;}
; RIGHTVF-LABEL: @pr34283
-; RIGHTVF: <4 x i64>
+; RIGHTVF: <2 x i64>
; WRONGVF-LABLE: @pr34283
; WRONGVF-NOT: <8 x i64>
|
@llvm/pr-subscribers-llvm-analysis Author: Alexey Bataev (alexey-bataev) ChangesThe patch improves/fixes existing max safe distance analysis. It fixes Part of #100755 Full diff: https://github.com/llvm/llvm-project/pull/121156.diff 7 Files Affected:
diff --git a/llvm/include/llvm/Analysis/LoopAccessAnalysis.h b/llvm/include/llvm/Analysis/LoopAccessAnalysis.h
index a35bc7402d1a89..d5cf959fb04ec2 100644
--- a/llvm/include/llvm/Analysis/LoopAccessAnalysis.h
+++ b/llvm/include/llvm/Analysis/LoopAccessAnalysis.h
@@ -216,6 +216,12 @@ class MemoryDepChecker {
return MaxSafeVectorWidthInBits;
}
+ /// Return safe power-of-2 number of elements, which do not prevent store-load
+ /// forwarding and safe to operate simultaneously.
+ std::optional<uint64_t> getStoreLoadForwardSafeVF() const {
+ return MaxStoreLoadForwardSafeVF;
+ }
+
/// In same cases when the dependency check fails we can still
/// vectorize the loop with a dynamic array access check.
bool shouldRetryWithRuntimeCheck() const {
@@ -304,6 +310,10 @@ class MemoryDepChecker {
/// restrictive.
uint64_t MaxSafeVectorWidthInBits = -1U;
+ /// Maximum number of elements (power-of-2 and non-power-of-2), which do not
+ /// prevent store-load forwarding and safe to operate simultaneously.
+ std::optional<uint64_t> MaxStoreLoadForwardSafeVF;
+
/// If we see a non-constant dependence distance we can still try to
/// vectorize this loop with runtime checks.
bool FoundNonConstantDistanceDependence = false;
diff --git a/llvm/include/llvm/Transforms/Vectorize/LoopVectorizationLegality.h b/llvm/include/llvm/Transforms/Vectorize/LoopVectorizationLegality.h
index fbe80eddbae07a..462c11d841b841 100644
--- a/llvm/include/llvm/Transforms/Vectorize/LoopVectorizationLegality.h
+++ b/llvm/include/llvm/Transforms/Vectorize/LoopVectorizationLegality.h
@@ -412,6 +412,12 @@ class LoopVectorizationLegality {
return getUncountableExitBlocks()[0];
}
+ /// Return safe power-of-2 number of elements, which do not prevent store-load
+ /// forwarding and safe to operate simultaneously.
+ std::optional<unsigned> getMaxStoreLoadForwardSafeVFPowerOf2() const {
+ return LAI->getDepChecker().getStoreLoadForwardSafeVF();
+ }
+
/// Returns true if vector representation of the instruction \p I
/// requires mask.
bool isMaskRequired(const Instruction *I) const {
diff --git a/llvm/lib/Analysis/LoopAccessAnalysis.cpp b/llvm/lib/Analysis/LoopAccessAnalysis.cpp
index 2c75d5625cb66d..764600c3adae7a 100644
--- a/llvm/lib/Analysis/LoopAccessAnalysis.cpp
+++ b/llvm/lib/Analysis/LoopAccessAnalysis.cpp
@@ -1752,31 +1752,34 @@ bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance,
// cause any slowdowns.
const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize;
// Maximum vector factor.
- uint64_t MaxVFWithoutSLForwardIssues = std::min(
- VectorizerParams::MaxVectorWidth * TypeByteSize, MinDepDistBytes);
+ uint64_t MaxVFWithoutSLForwardIssuesPowerOf2 = std::min(
+ VectorizerParams::MaxVectorWidth * TypeByteSize,
+ MaxStoreLoadForwardSafeVF.value_or(std::numeric_limits<uint64_t>::max()));
// Compute the smallest VF at which the store and load would be misaligned.
- for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues;
- VF *= 2) {
+ for (uint64_t VF = 2 * TypeByteSize;
+ VF <= MaxVFWithoutSLForwardIssuesPowerOf2; VF *= 2) {
// If the number of vector iteration between the store and the load are
// small we could incur conflicts.
if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) {
- MaxVFWithoutSLForwardIssues = (VF >> 1);
+ MaxVFWithoutSLForwardIssuesPowerOf2 = (VF >> 1);
break;
}
}
- if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) {
+ if (MaxVFWithoutSLForwardIssuesPowerOf2 < 2 * TypeByteSize) {
LLVM_DEBUG(
dbgs() << "LAA: Distance " << Distance
<< " that could cause a store-load forwarding conflict\n");
return true;
}
- if (MaxVFWithoutSLForwardIssues < MinDepDistBytes &&
- MaxVFWithoutSLForwardIssues !=
- VectorizerParams::MaxVectorWidth * TypeByteSize)
- MinDepDistBytes = MaxVFWithoutSLForwardIssues;
+ if (MaxVFWithoutSLForwardIssuesPowerOf2 < 2 * TypeByteSize)
+ MaxStoreLoadForwardSafeVF = 1;
+ else if (MaxVFWithoutSLForwardIssuesPowerOf2 < MaxStoreLoadForwardSafeVF &&
+ MaxVFWithoutSLForwardIssuesPowerOf2 !=
+ VectorizerParams::MaxVectorWidth * TypeByteSize)
+ MaxStoreLoadForwardSafeVF = MaxVFWithoutSLForwardIssuesPowerOf2;
return false;
}
diff --git a/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp b/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp
index cb828b738d310f..367a011323b51b 100644
--- a/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp
+++ b/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp
@@ -1436,8 +1436,10 @@ class LoopVectorizationCostModel {
/// Selects and saves TailFoldingStyle for 2 options - if IV update may
/// overflow or not.
/// \param IsScalableVF true if scalable vector factors enabled.
+ /// \param TailFoldPowOf2 true if tail folding with power-of-2
+ /// safe distance can be enabled.
/// \param UserIC User specific interleave count.
- void setTailFoldingStyles(bool IsScalableVF, unsigned UserIC) {
+ void setTailFoldingStyles(bool IsScalableVF, bool TailFoldPowOf2, unsigned UserIC) {
assert(!ChosenTailFoldingStyle && "Tail folding must not be selected yet.");
if (!Legal->canFoldTailByMasking()) {
ChosenTailFoldingStyle =
@@ -1446,24 +1448,37 @@ class LoopVectorizationCostModel {
}
if (!ForceTailFoldingStyle.getNumOccurrences()) {
- ChosenTailFoldingStyle = std::make_pair(
- TTI.getPreferredTailFoldingStyle(/*IVUpdateMayOverflow=*/true),
- TTI.getPreferredTailFoldingStyle(/*IVUpdateMayOverflow=*/false));
+ if (!TailFoldPowOf2)
+ ChosenTailFoldingStyle =
+ std::make_pair(TailFoldingStyle::None, TailFoldingStyle::None);
+ else
+ ChosenTailFoldingStyle = std::make_pair(
+ TTI.getPreferredTailFoldingStyle(/*IVUpdateMayOverflow=*/true),
+ TTI.getPreferredTailFoldingStyle(/*IVUpdateMayOverflow=*/false));
return;
}
// Set styles when forced.
ChosenTailFoldingStyle = std::make_pair(ForceTailFoldingStyle.getValue(),
ForceTailFoldingStyle.getValue());
- if (ForceTailFoldingStyle != TailFoldingStyle::DataWithEVL)
+ if (ForceTailFoldingStyle != TailFoldingStyle::DataWithEVL) {
+ if (!TailFoldPowOf2)
+ ChosenTailFoldingStyle =
+ std::make_pair(TailFoldingStyle::None, TailFoldingStyle::None);
return;
+ }
// Override forced styles if needed.
// FIXME: use actual opcode/data type for analysis here.
// FIXME: Investigate opportunity for fixed vector factor.
- bool EVLIsLegal = UserIC <= 1 &&
+ bool EVLIsLegal = UserIC <= 1 && IsScalableVF &&
TTI.hasActiveVectorLength(0, nullptr, Align()) &&
!EnableVPlanNativePath;
if (!EVLIsLegal) {
+ if (!TailFoldPowOf2) {
+ ChosenTailFoldingStyle =
+ std::make_pair(TailFoldingStyle::None, TailFoldingStyle::None);
+ return;
+ }
// If for some reason EVL mode is unsupported, fallback to
// DataWithoutLaneMask to try to vectorize the loop with folded tail
// in a generic way.
@@ -4016,11 +4031,15 @@ FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF(
// It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
// the memory accesses that is most restrictive (involved in the smallest
// dependence distance).
- unsigned MaxSafeElements =
- llvm::bit_floor(Legal->getMaxSafeVectorWidthInBits() / WidestType);
+ unsigned MaxSafeElements = Legal->getMaxSafeVectorWidthInBits() / WidestType;
+ if (Legal->isSafeForAnyVectorWidth())
+ MaxSafeElements = bit_ceil(MaxSafeElements);
+ unsigned MaxSafeElementsPowerOf2 = bit_floor(std::gcd(
+ MaxSafeElements, Legal->getMaxStoreLoadForwardSafeVFPowerOf2().value_or(
+ 1ULL << countr_zero(MaxSafeElements))));
+ auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElementsPowerOf2);
+ auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElementsPowerOf2);
- auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements);
- auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements);
if (!Legal->isSafeForAnyVectorWidth())
this->MaxSafeElements = MaxSafeElements;
@@ -4233,13 +4252,11 @@ LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) {
LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
return MaxFactors;
}
+ MaxPowerOf2RuntimeVF.reset();
}
- // If we don't know the precise trip count, or if the trip count that we
- // found modulo the vectorization factor is not zero, try to fold the tail
- // by masking.
- // FIXME: look for a smaller MaxVF that does divide TC rather than masking.
- setTailFoldingStyles(MaxFactors.ScalableVF.isScalable(), UserIC);
+ setTailFoldingStyles(MaxFactors.ScalableVF.isScalable(),
+ !MaxPowerOf2RuntimeVF.has_value(), UserIC);
if (foldTailByMasking()) {
if (getTailFoldingStyle() == TailFoldingStyle::DataWithEVL) {
LLVM_DEBUG(
@@ -4258,6 +4275,12 @@ LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) {
return MaxFactors;
}
+ if (MaxPowerOf2RuntimeVF) {
+ // Accept MaxFixedVF if we do not have a tail.
+ LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
+ return MaxFactors;
+ }
+
// If there was a tail-folding hint/switch, but we can't fold the tail by
// masking, fallback to a vectorization with a scalar epilogue.
if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
diff --git a/llvm/test/Transforms/LoopVectorize/RISCV/riscv-vector-reverse.ll b/llvm/test/Transforms/LoopVectorize/RISCV/riscv-vector-reverse.ll
index eb60c24393df99..cbdd9a06497655 100644
--- a/llvm/test/Transforms/LoopVectorize/RISCV/riscv-vector-reverse.ll
+++ b/llvm/test/Transforms/LoopVectorize/RISCV/riscv-vector-reverse.ll
@@ -21,7 +21,7 @@ define void @vector_reverse_i64(ptr nocapture noundef writeonly %A, ptr nocaptur
; CHECK-NEXT: LV: Found trip count: 0
; CHECK-NEXT: LV: Found maximum trip count: 4294967295
; CHECK-NEXT: LV: Scalable vectorization is available
-; CHECK-NEXT: LV: The max safe fixed VF is: 67108864.
+; CHECK-NEXT: LV: The max safe fixed VF is: 134217728.
; CHECK-NEXT: LV: The max safe scalable VF is: vscale x 4294967295.
; CHECK-NEXT: LV: Found uniform instruction: %cmp = icmp ugt i64 %indvars.iv, 1
; CHECK-NEXT: LV: Found uniform instruction: %arrayidx = getelementptr inbounds i32, ptr %B, i64 %idxprom
@@ -268,7 +268,7 @@ define void @vector_reverse_f32(ptr nocapture noundef writeonly %A, ptr nocaptur
; CHECK-NEXT: LV: Found trip count: 0
; CHECK-NEXT: LV: Found maximum trip count: 4294967295
; CHECK-NEXT: LV: Scalable vectorization is available
-; CHECK-NEXT: LV: The max safe fixed VF is: 67108864.
+; CHECK-NEXT: LV: The max safe fixed VF is: 134217728.
; CHECK-NEXT: LV: The max safe scalable VF is: vscale x 4294967295.
; CHECK-NEXT: LV: Found uniform instruction: %cmp = icmp ugt i64 %indvars.iv, 1
; CHECK-NEXT: LV: Found uniform instruction: %arrayidx = getelementptr inbounds float, ptr %B, i64 %idxprom
diff --git a/llvm/test/Transforms/LoopVectorize/memdep-fold-tail.ll b/llvm/test/Transforms/LoopVectorize/memdep-fold-tail.ll
index d1ad7e3f4fc0d8..ea592c1e1063ac 100644
--- a/llvm/test/Transforms/LoopVectorize/memdep-fold-tail.ll
+++ b/llvm/test/Transforms/LoopVectorize/memdep-fold-tail.ll
@@ -24,57 +24,9 @@ target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f3
define void @maxvf3() {
; CHECK-LABEL: @maxvf3(
; CHECK-NEXT: entry:
-; CHECK-NEXT: br i1 false, label [[SCALAR_PH:%.*]], label [[VECTOR_PH:%.*]]
-; CHECK: vector.ph:
-; CHECK-NEXT: br label [[VECTOR_BODY:%.*]]
-; CHECK: vector.body:
-; CHECK-NEXT: [[INDEX:%.*]] = phi i32 [ 0, [[VECTOR_PH]] ], [ [[INDEX_NEXT:%.*]], [[PRED_STORE_CONTINUE6:%.*]] ]
-; CHECK-NEXT: [[VEC_IND:%.*]] = phi <2 x i32> [ <i32 0, i32 1>, [[VECTOR_PH]] ], [ [[VEC_IND_NEXT:%.*]], [[PRED_STORE_CONTINUE6]] ]
-; CHECK-NEXT: [[TMP0:%.*]] = icmp ule <2 x i32> [[VEC_IND]], splat (i32 14)
-; CHECK-NEXT: [[TMP1:%.*]] = extractelement <2 x i1> [[TMP0]], i32 0
-; CHECK-NEXT: br i1 [[TMP1]], label [[PRED_STORE_IF:%.*]], label [[PRED_STORE_CONTINUE:%.*]]
-; CHECK: pred.store.if:
-; CHECK-NEXT: [[TMP2:%.*]] = add i32 [[INDEX]], 0
-; CHECK-NEXT: [[TMP3:%.*]] = getelementptr inbounds [18 x i8], ptr @a, i32 0, i32 [[TMP2]]
-; CHECK-NEXT: store i8 69, ptr [[TMP3]], align 8
-; CHECK-NEXT: br label [[PRED_STORE_CONTINUE]]
-; CHECK: pred.store.continue:
-; CHECK-NEXT: [[TMP4:%.*]] = extractelement <2 x i1> [[TMP0]], i32 1
-; CHECK-NEXT: br i1 [[TMP4]], label [[PRED_STORE_IF1:%.*]], label [[PRED_STORE_CONTINUE2:%.*]]
-; CHECK: pred.store.if1:
-; CHECK-NEXT: [[TMP5:%.*]] = add i32 [[INDEX]], 1
-; CHECK-NEXT: [[TMP6:%.*]] = getelementptr inbounds [18 x i8], ptr @a, i32 0, i32 [[TMP5]]
-; CHECK-NEXT: store i8 69, ptr [[TMP6]], align 8
-; CHECK-NEXT: br label [[PRED_STORE_CONTINUE2]]
-; CHECK: pred.store.continue2:
-; CHECK-NEXT: [[TMP7:%.*]] = add nuw nsw <2 x i32> splat (i32 3), [[VEC_IND]]
-; CHECK-NEXT: [[TMP8:%.*]] = extractelement <2 x i1> [[TMP0]], i32 0
-; CHECK-NEXT: br i1 [[TMP8]], label [[PRED_STORE_IF3:%.*]], label [[PRED_STORE_CONTINUE4:%.*]]
-; CHECK: pred.store.if3:
-; CHECK-NEXT: [[TMP9:%.*]] = extractelement <2 x i32> [[TMP7]], i32 0
-; CHECK-NEXT: [[TMP10:%.*]] = getelementptr inbounds [18 x i8], ptr @a, i32 0, i32 [[TMP9]]
-; CHECK-NEXT: store i8 7, ptr [[TMP10]], align 8
-; CHECK-NEXT: br label [[PRED_STORE_CONTINUE4]]
-; CHECK: pred.store.continue4:
-; CHECK-NEXT: [[TMP11:%.*]] = extractelement <2 x i1> [[TMP0]], i32 1
-; CHECK-NEXT: br i1 [[TMP11]], label [[PRED_STORE_IF5:%.*]], label [[PRED_STORE_CONTINUE6]]
-; CHECK: pred.store.if5:
-; CHECK-NEXT: [[TMP12:%.*]] = extractelement <2 x i32> [[TMP7]], i32 1
-; CHECK-NEXT: [[TMP13:%.*]] = getelementptr inbounds [18 x i8], ptr @a, i32 0, i32 [[TMP12]]
-; CHECK-NEXT: store i8 7, ptr [[TMP13]], align 8
-; CHECK-NEXT: br label [[PRED_STORE_CONTINUE6]]
-; CHECK: pred.store.continue6:
-; CHECK-NEXT: [[INDEX_NEXT]] = add nuw i32 [[INDEX]], 2
-; CHECK-NEXT: [[VEC_IND_NEXT]] = add <2 x i32> [[VEC_IND]], splat (i32 2)
-; CHECK-NEXT: [[TMP14:%.*]] = icmp eq i32 [[INDEX_NEXT]], 16
-; CHECK-NEXT: br i1 [[TMP14]], label [[MIDDLE_BLOCK:%.*]], label [[VECTOR_BODY]], !llvm.loop [[LOOP0:![0-9]+]]
-; CHECK: middle.block:
-; CHECK-NEXT: br i1 true, label [[FOR_END:%.*]], label [[SCALAR_PH]]
-; CHECK: scalar.ph:
-; CHECK-NEXT: [[BC_RESUME_VAL:%.*]] = phi i32 [ 16, [[MIDDLE_BLOCK]] ], [ 0, [[ENTRY:%.*]] ]
; CHECK-NEXT: br label [[FOR_BODY:%.*]]
; CHECK: for.body:
-; CHECK-NEXT: [[J:%.*]] = phi i32 [ [[BC_RESUME_VAL]], [[SCALAR_PH]] ], [ [[J_NEXT:%.*]], [[FOR_BODY]] ]
+; CHECK-NEXT: [[J:%.*]] = phi i32 [ 0, [[ENTRY:%.*]] ], [ [[J_NEXT:%.*]], [[FOR_BODY]] ]
; CHECK-NEXT: [[AJ:%.*]] = getelementptr inbounds [18 x i8], ptr @a, i32 0, i32 [[J]]
; CHECK-NEXT: store i8 69, ptr [[AJ]], align 8
; CHECK-NEXT: [[JP3:%.*]] = add nuw nsw i32 3, [[J]]
@@ -82,7 +34,7 @@ define void @maxvf3() {
; CHECK-NEXT: store i8 7, ptr [[AJP3]], align 8
; CHECK-NEXT: [[J_NEXT]] = add nuw nsw i32 [[J]], 1
; CHECK-NEXT: [[EXITCOND:%.*]] = icmp eq i32 [[J_NEXT]], 15
-; CHECK-NEXT: br i1 [[EXITCOND]], label [[FOR_END]], label [[FOR_BODY]], !llvm.loop [[LOOP3:![0-9]+]]
+; CHECK-NEXT: br i1 [[EXITCOND]], label [[FOR_END:%.*]], label [[FOR_BODY]], !llvm.loop [[LOOP0:![0-9]+]]
; CHECK: for.end:
; CHECK-NEXT: ret void
;
diff --git a/llvm/test/Transforms/LoopVectorize/memdep.ll b/llvm/test/Transforms/LoopVectorize/memdep.ll
index b891b4312f18d3..28cf3b61b2554a 100644
--- a/llvm/test/Transforms/LoopVectorize/memdep.ll
+++ b/llvm/test/Transforms/LoopVectorize/memdep.ll
@@ -226,7 +226,7 @@ for.end:
;Check the new calculation of the maximum safe distance in bits which can be vectorized.
;The previous behavior did not take account that the stride was 2.
-;Therefore the maxVF was computed as 8 instead of 4, as the dependence distance here is 6 iterations, given by |N-(N-12)|/2.
+;Therefore the maxVF was computed as 8 instead of 2, as the dependence distance here is 6 iterations, given by |N-(N-12)|/2.
;#define M 32
;#define N 2 * M
@@ -242,7 +242,7 @@ for.end:
;}
; RIGHTVF-LABEL: @pr34283
-; RIGHTVF: <4 x i64>
+; RIGHTVF: <2 x i64>
; WRONGVF-LABLE: @pr34283
; WRONGVF-NOT: <8 x i64>
|
✅ With the latest revision this PR passed the C/C++ code formatter. |
Created using spr 1.3.5
Ping! |
if (Legal->isSafeForAnyVectorWidth()) | ||
MaxSafeElements = bit_ceil(MaxSafeElements); | ||
unsigned MaxSafeElementsPowerOf2 = bit_floor(std::gcd( | ||
MaxSafeElements, Legal->getMaxStoreLoadForwardSafeVFPowerOf2().value_or( | ||
1ULL << countr_zero(MaxSafeElements)))); | ||
auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElementsPowerOf2); | ||
auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElementsPowerOf2); |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Is this the main functional change here? Would it be possible to split this off from the various renaming that are also included in the patch?
The other parts of the patch dealing with TailFoldPowOf2
are needed for EVL? Should there be some EVL test cases with changes?
@@ -226,7 +226,7 @@ for.end: | |||
|
|||
;Check the new calculation of the maximum safe distance in bits which can be vectorized. | |||
;The previous behavior did not take account that the stride was 2. | |||
;Therefore the maxVF was computed as 8 instead of 4, as the dependence distance here is 6 iterations, given by |N-(N-12)|/2. | |||
;Therefore the maxVF was computed as 8 instead of 2, as the dependence distance here is 6 iterations, given by |N-(N-12)|/2. |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Is the comment here not accurate any more w.r.t to the dep distance of 6?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I think so. If the dep distance is 6, the maxVF should be 2, not 4 (4 still introduces ineffective overlapping on the 2nd,4th,etc. iterations)
MaxVFWithoutSLForwardIssues != | ||
VectorizerParams::MaxVectorWidth * TypeByteSize) | ||
MinDepDistBytes = MaxVFWithoutSLForwardIssues; | ||
if (MaxVFWithoutSLForwardIssuesPowerOf2 < 2 * TypeByteSize) |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
This looks like the same condition as the early exit above?
Created using spr 1.3.5
Ping! |
Created using spr 1.3.5
Ping! |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Could you add a test case to the description that illustrates for what cases this will help eventually for EVL? Still struggling to connect the dots how this will be used eventually.
llvm/include/llvm/Transforms/Vectorize/LoopVectorizationLegality.h
Outdated
Show resolved
Hide resolved
We already have the tests, see test/Transforms/LoopVectorize/RISCV/vectorize-force-tail-with-evl-safe-dep-distance.ll |
Ping! |
Created using spr 1.3.5
Ping! |
Ping! |
1 similar comment
Ping! |
llvm/test/Analysis/LoopAccessAnalysis/stride-access-dependence.ll
Outdated
Show resolved
Hide resolved
llvm/test/Transforms/LoopVectorize/RISCV/riscv-vector-reverse.ll
Outdated
Show resolved
Hide resolved
Created using spr 1.3.5
Ping! |
Created using spr 1.3.5
Ping! |
1 similar comment
Ping! |
@@ -4107,6 +4112,7 @@ LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) { | |||
LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); | |||
return MaxFactors; | |||
} | |||
MaxPowerOf2RuntimeVF.reset(); |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Related to the PR?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Yes, without it the test are failed
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
But is this only due to the code below added by the patch?
if (MaxPowerOf2RuntimeVF) {
// Accept MaxFixedVF if we do not have a tail.
LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
return MaxFactors;
}
It is not clear to me why MaxPowerOf2RuntimeVF
set would mean no tail remains, the only place we can guarantee no tail at the moment is the code just above here, which checks against TC?
Created using spr 1.3.5
Ping! |
1 similar comment
Ping! |
@@ -4107,6 +4112,7 @@ LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) { | |||
LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); | |||
return MaxFactors; | |||
} | |||
MaxPowerOf2RuntimeVF.reset(); |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
But is this only due to the code below added by the patch?
if (MaxPowerOf2RuntimeVF) {
// Accept MaxFixedVF if we do not have a tail.
LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
return MaxFactors;
}
It is not clear to me why MaxPowerOf2RuntimeVF
set would mean no tail remains, the only place we can guarantee no tail at the moment is the code just above here, which checks against TC?
Created using spr 1.3.5
Removed |
Ping! |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
LGTM, thanks!
LLVM Buildbot has detected a new failure on builder Full details are available at: https://lab.llvm.org/buildbot/#/builders/134/builds/16026 Here is the relevant piece of the build log for the reference
|
…llvm#121156) The patch splits the store-load forwarding distance analysis from other dependency analysis in LAA. Currently it supports only power-of-2 distances, required to support non-power-of-2 distances in future. Part of llvm#100755
MaxStoreLoadForwardSafeDistanceInBits && | ||
MaxVFWithoutSLForwardIssuesPowerOf2 != | ||
VectorizerParams::MaxVectorWidth * TypeByteSize) { | ||
uint64_t MaxVF = MaxVFWithoutSLForwardIssuesPowerOf2 / CommonStride; |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
The patch splits the store-load forwarding distance analysis from other
dependency analysis in LAA. Currently it supports only power-of-2
distances, required to support non-power-of-2 distances in future.
Part of #100755