Skip to content

[lld]Add lld/Common/BPSectionOrdererBase from MachO for reuse in ELF #117514

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Dec 18, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
374 changes: 374 additions & 0 deletions lld/Common/BPSectionOrdererBase.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,374 @@
//===- BPSectionOrdererBase.cpp -------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "lld/Common/BPSectionOrdererBase.h"
#include "lld/Common/ErrorHandler.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ProfileData/InstrProfReader.h"
#include "llvm/Support/BalancedPartitioning.h"
#include "llvm/Support/TimeProfiler.h"
#include "llvm/Support/VirtualFileSystem.h"

#define DEBUG_TYPE "bp-section-orderer"

using namespace llvm;
using namespace lld;

using UtilityNodes = SmallVector<BPFunctionNode::UtilityNodeT>;

static SmallVector<std::pair<unsigned, UtilityNodes>> getUnsForCompression(
ArrayRef<const BPSectionBase *> sections,
const DenseMap<const void *, uint64_t> &sectionToIdx,
ArrayRef<unsigned> sectionIdxs,
DenseMap<unsigned, SmallVector<unsigned>> *duplicateSectionIdxs,
BPFunctionNode::UtilityNodeT &maxUN) {
TimeTraceScope timeScope("Build nodes for compression");

SmallVector<std::pair<unsigned, SmallVector<uint64_t>>> sectionHashes;
sectionHashes.reserve(sectionIdxs.size());
SmallVector<uint64_t> hashes;

for (unsigned sectionIdx : sectionIdxs) {
const auto *isec = sections[sectionIdx];
isec->getSectionHashes(hashes, sectionToIdx);
sectionHashes.emplace_back(sectionIdx, std::move(hashes));
hashes.clear();
}

DenseMap<uint64_t, unsigned> hashFrequency;
for (auto &[sectionIdx, hashes] : sectionHashes)
for (auto hash : hashes)
++hashFrequency[hash];

if (duplicateSectionIdxs) {
// Merge sections that are nearly identical
SmallVector<std::pair<unsigned, SmallVector<uint64_t>>> newSectionHashes;
DenseMap<uint64_t, unsigned> wholeHashToSectionIdx;
for (auto &[sectionIdx, hashes] : sectionHashes) {
uint64_t wholeHash = 0;
for (auto hash : hashes)
if (hashFrequency[hash] > 5)
wholeHash ^= hash;
auto [it, wasInserted] =
wholeHashToSectionIdx.insert(std::make_pair(wholeHash, sectionIdx));
if (wasInserted) {
newSectionHashes.emplace_back(sectionIdx, hashes);
} else {
(*duplicateSectionIdxs)[it->getSecond()].push_back(sectionIdx);
}
}
sectionHashes = newSectionHashes;

// Recompute hash frequencies
hashFrequency.clear();
for (auto &[sectionIdx, hashes] : sectionHashes)
for (auto hash : hashes)
++hashFrequency[hash];
}

// Filter rare and common hashes and assign each a unique utility node that
// doesn't conflict with the trace utility nodes
DenseMap<uint64_t, BPFunctionNode::UtilityNodeT> hashToUN;
for (auto &[hash, frequency] : hashFrequency) {
if (frequency <= 1 || frequency * 2 > sectionHashes.size())
continue;
hashToUN[hash] = ++maxUN;
}

SmallVector<std::pair<unsigned, UtilityNodes>> sectionUns;
for (auto &[sectionIdx, hashes] : sectionHashes) {
UtilityNodes uns;
for (auto &hash : hashes) {
auto it = hashToUN.find(hash);
if (it != hashToUN.end())
uns.push_back(it->second);
}
sectionUns.emplace_back(sectionIdx, uns);
}
return sectionUns;
}

llvm::DenseMap<const BPSectionBase *, size_t>
BPSectionBase::reorderSectionsByBalancedPartitioning(
size_t &highestAvailablePriority, llvm::StringRef profilePath,
bool forFunctionCompression, bool forDataCompression,
bool compressionSortStartupFunctions, bool verbose,
SmallVector<std::unique_ptr<BPSectionBase>> &inputSections) {
TimeTraceScope timeScope("Setup Balanced Partitioning");
SmallVector<const BPSectionBase *> sections;
DenseMap<const void *, uint64_t> sectionToIdx;
StringMap<DenseSet<unsigned>> symbolToSectionIdxs;

// Process input sections
for (const auto &isec : inputSections) {
if (!isec->hasValidData())
continue;

unsigned sectionIdx = sections.size();
sectionToIdx.try_emplace(isec->getSection(), sectionIdx);
sections.emplace_back(isec.get());
for (auto &sym : isec->getSymbols())
symbolToSectionIdxs[sym->getName()].insert(sectionIdx);
}
StringMap<DenseSet<unsigned>> rootSymbolToSectionIdxs;
for (auto &entry : symbolToSectionIdxs) {
StringRef name = entry.getKey();
auto &sectionIdxs = entry.getValue();
name = BPSectionBase::getRootSymbol(name);
rootSymbolToSectionIdxs[name].insert(sectionIdxs.begin(),
sectionIdxs.end());
if (auto resolvedLinkageName =
sections[*sectionIdxs.begin()]->getResolvedLinkageName(name))
rootSymbolToSectionIdxs[resolvedLinkageName.value()].insert(
sectionIdxs.begin(), sectionIdxs.end());
}

BPFunctionNode::UtilityNodeT maxUN = 0;
DenseMap<unsigned, UtilityNodes> startupSectionIdxUNs;
// Used to define the initial order for startup functions.
DenseMap<unsigned, size_t> sectionIdxToTimestamp;
std::unique_ptr<InstrProfReader> reader;
if (!profilePath.empty()) {
auto fs = vfs::getRealFileSystem();
auto readerOrErr = InstrProfReader::create(profilePath, *fs);
lld::checkError(readerOrErr.takeError());

reader = std::move(readerOrErr.get());
for (auto &entry : *reader) {
// Read all entries
(void)entry;
}
auto &traces = reader->getTemporalProfTraces();

DenseMap<unsigned, BPFunctionNode::UtilityNodeT> sectionIdxToFirstUN;
for (size_t traceIdx = 0; traceIdx < traces.size(); traceIdx++) {
uint64_t currentSize = 0, cutoffSize = 1;
size_t cutoffTimestamp = 1;
auto &trace = traces[traceIdx].FunctionNameRefs;
for (size_t timestamp = 0; timestamp < trace.size(); timestamp++) {
auto [Filename, ParsedFuncName] = getParsedIRPGOName(
reader->getSymtab().getFuncOrVarName(trace[timestamp]));
ParsedFuncName = BPSectionBase::getRootSymbol(ParsedFuncName);

auto sectionIdxsIt = rootSymbolToSectionIdxs.find(ParsedFuncName);
if (sectionIdxsIt == rootSymbolToSectionIdxs.end())
continue;
auto &sectionIdxs = sectionIdxsIt->getValue();
// If the same symbol is found in multiple sections, they might be
// identical, so we arbitrarily use the size from the first section.
currentSize += sections[*sectionIdxs.begin()]->getSize();

// Since BalancedPartitioning is sensitive to the initial order, we need
// to explicitly define it to be ordered by earliest timestamp.
for (unsigned sectionIdx : sectionIdxs) {
auto [it, wasInserted] =
sectionIdxToTimestamp.try_emplace(sectionIdx, timestamp);
if (!wasInserted)
it->getSecond() = std::min<size_t>(it->getSecond(), timestamp);
}

if (timestamp >= cutoffTimestamp || currentSize >= cutoffSize) {
++maxUN;
cutoffSize = 2 * currentSize;
cutoffTimestamp = 2 * cutoffTimestamp;
}
for (unsigned sectionIdx : sectionIdxs)
sectionIdxToFirstUN.try_emplace(sectionIdx, maxUN);
}
for (auto &[sectionIdx, firstUN] : sectionIdxToFirstUN)
for (auto un = firstUN; un <= maxUN; ++un)
startupSectionIdxUNs[sectionIdx].push_back(un);
++maxUN;
sectionIdxToFirstUN.clear();
}
}

SmallVector<unsigned> sectionIdxsForFunctionCompression,
sectionIdxsForDataCompression;
for (unsigned sectionIdx = 0; sectionIdx < sections.size(); sectionIdx++) {
if (startupSectionIdxUNs.count(sectionIdx))
continue;
const auto *isec = sections[sectionIdx];
if (isec->isCodeSection()) {
if (forFunctionCompression)
sectionIdxsForFunctionCompression.push_back(sectionIdx);
} else {
if (forDataCompression)
sectionIdxsForDataCompression.push_back(sectionIdx);
}
}

if (compressionSortStartupFunctions) {
SmallVector<unsigned> startupIdxs;
for (auto &[sectionIdx, uns] : startupSectionIdxUNs)
startupIdxs.push_back(sectionIdx);
auto unsForStartupFunctionCompression =
getUnsForCompression(sections, sectionToIdx, startupIdxs,
/*duplicateSectionIdxs=*/nullptr, maxUN);
for (auto &[sectionIdx, compressionUns] :
unsForStartupFunctionCompression) {
auto &uns = startupSectionIdxUNs[sectionIdx];
uns.append(compressionUns);
llvm::sort(uns);
uns.erase(std::unique(uns.begin(), uns.end()), uns.end());
}
}

// Map a section index (order directly) to a list of duplicate section indices
// (not ordered directly).
DenseMap<unsigned, SmallVector<unsigned>> duplicateSectionIdxs;
auto unsForFunctionCompression = getUnsForCompression(
sections, sectionToIdx, sectionIdxsForFunctionCompression,
&duplicateSectionIdxs, maxUN);
auto unsForDataCompression = getUnsForCompression(
sections, sectionToIdx, sectionIdxsForDataCompression,
&duplicateSectionIdxs, maxUN);

std::vector<BPFunctionNode> nodesForStartup, nodesForFunctionCompression,
nodesForDataCompression;
for (auto &[sectionIdx, uns] : startupSectionIdxUNs)
nodesForStartup.emplace_back(sectionIdx, uns);
for (auto &[sectionIdx, uns] : unsForFunctionCompression)
nodesForFunctionCompression.emplace_back(sectionIdx, uns);
for (auto &[sectionIdx, uns] : unsForDataCompression)
nodesForDataCompression.emplace_back(sectionIdx, uns);

// Use the first timestamp to define the initial order for startup nodes.
llvm::sort(nodesForStartup, [&sectionIdxToTimestamp](auto &L, auto &R) {
return std::make_pair(sectionIdxToTimestamp[L.Id], L.Id) <
std::make_pair(sectionIdxToTimestamp[R.Id], R.Id);
});
// Sort compression nodes by their Id (which is the section index) because the
// input linker order tends to be not bad.
llvm::sort(nodesForFunctionCompression,
[](auto &L, auto &R) { return L.Id < R.Id; });
llvm::sort(nodesForDataCompression,
[](auto &L, auto &R) { return L.Id < R.Id; });

{
TimeTraceScope timeScope("Balanced Partitioning");
BalancedPartitioningConfig config;
BalancedPartitioning bp(config);
bp.run(nodesForStartup);
bp.run(nodesForFunctionCompression);
bp.run(nodesForDataCompression);
}

unsigned numStartupSections = 0;
unsigned numCodeCompressionSections = 0;
unsigned numDuplicateCodeSections = 0;
unsigned numDataCompressionSections = 0;
unsigned numDuplicateDataSections = 0;
SetVector<const BPSectionBase *> orderedSections;
// Order startup functions,
for (auto &node : nodesForStartup) {
const auto *isec = sections[node.Id];
if (orderedSections.insert(isec))
++numStartupSections;
}
// then functions for compression,
for (auto &node : nodesForFunctionCompression) {
const auto *isec = sections[node.Id];
if (orderedSections.insert(isec))
++numCodeCompressionSections;

auto It = duplicateSectionIdxs.find(node.Id);
if (It == duplicateSectionIdxs.end())
continue;
for (auto dupSecIdx : It->getSecond()) {
const auto *dupIsec = sections[dupSecIdx];
if (orderedSections.insert(dupIsec))
++numDuplicateCodeSections;
}
}
// then data for compression.
for (auto &node : nodesForDataCompression) {
const auto *isec = sections[node.Id];
if (orderedSections.insert(isec))
++numDataCompressionSections;
auto It = duplicateSectionIdxs.find(node.Id);
if (It == duplicateSectionIdxs.end())
continue;
for (auto dupSecIdx : It->getSecond()) {
const auto *dupIsec = sections[dupSecIdx];
if (orderedSections.insert(dupIsec))
++numDuplicateDataSections;
}
}

if (verbose) {
unsigned numTotalOrderedSections =
numStartupSections + numCodeCompressionSections +
numDuplicateCodeSections + numDataCompressionSections +
numDuplicateDataSections;
dbgs()
<< "Ordered " << numTotalOrderedSections
<< " sections using balanced partitioning:\n Functions for startup: "
<< numStartupSections
<< "\n Functions for compression: " << numCodeCompressionSections
<< "\n Duplicate functions: " << numDuplicateCodeSections
<< "\n Data for compression: " << numDataCompressionSections
<< "\n Duplicate data: " << numDuplicateDataSections << "\n";

if (!profilePath.empty()) {
// Evaluate this function order for startup
StringMap<std::pair<uint64_t, uint64_t>> symbolToPageNumbers;
const uint64_t pageSize = (1 << 14);
uint64_t currentAddress = 0;
for (const auto *isec : orderedSections) {
for (auto &sym : isec->getSymbols()) {
uint64_t startAddress = currentAddress + sym->getValue().value_or(0);
uint64_t endAddress = startAddress + sym->getSize().value_or(0);
uint64_t firstPage = startAddress / pageSize;
// I think the kernel might pull in a few pages when one it touched,
// so it might be more accurate to force lastPage to be aligned by
// 4?
uint64_t lastPage = endAddress / pageSize;
StringRef rootSymbol = sym->getName();
rootSymbol = BPSectionBase::getRootSymbol(rootSymbol);
symbolToPageNumbers.try_emplace(rootSymbol, firstPage, lastPage);
if (auto resolvedLinkageName =
isec->getResolvedLinkageName(rootSymbol))
symbolToPageNumbers.try_emplace(resolvedLinkageName.value(),
firstPage, lastPage);
}
currentAddress += isec->getSize();
}

// The area under the curve F where F(t) is the total number of page
// faults at step t.
unsigned area = 0;
for (auto &trace : reader->getTemporalProfTraces()) {
SmallSet<uint64_t, 0> touchedPages;
for (unsigned step = 0; step < trace.FunctionNameRefs.size(); step++) {
auto traceId = trace.FunctionNameRefs[step];
auto [Filename, ParsedFuncName] =
getParsedIRPGOName(reader->getSymtab().getFuncOrVarName(traceId));
ParsedFuncName = BPSectionBase::getRootSymbol(ParsedFuncName);
auto it = symbolToPageNumbers.find(ParsedFuncName);
if (it != symbolToPageNumbers.end()) {
auto &[firstPage, lastPage] = it->getValue();
for (uint64_t i = firstPage; i <= lastPage; i++)
touchedPages.insert(i);
}
area += touchedPages.size();
}
}
dbgs() << "Total area under the page fault curve: " << (float)area
<< "\n";
}
}

DenseMap<const BPSectionBase *, size_t> sectionPriorities;
for (const auto *isec : orderedSections)
sectionPriorities[isec] = --highestAvailablePriority;
return sectionPriorities;
}
2 changes: 2 additions & 0 deletions lld/Common/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -24,6 +24,7 @@ set_source_files_properties("${version_inc}"

add_lld_library(lldCommon
Args.cpp
BPSectionOrdererBase.cpp
CommonLinkerContext.cpp
DriverDispatcher.cpp
DWARF.cpp
Expand All @@ -47,6 +48,7 @@ add_lld_library(lldCommon
Demangle
MC
Option
ProfileData
Support
Target
TargetParser
Expand Down
Loading
Loading