Skip to content

[mlir] Convert expand_shape to more static form #112265

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 6 commits into from
Oct 25, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
83 changes: 82 additions & 1 deletion mlir/lib/Dialect/Tensor/IR/TensorOps.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -24,6 +24,7 @@
#include "mlir/IR/TypeUtilities.h"
#include "mlir/Interfaces/DestinationStyleOpInterface.h"
#include "mlir/Interfaces/LoopLikeInterface.h"
#include "mlir/Support/LLVM.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallBitVector.h"
Expand Down Expand Up @@ -1982,14 +1983,94 @@ struct FoldDimOfCollapseShape : public OpRewritePattern<DimOp> {
return success();
}
};

/// Fold/sink a producer `tensor.cast` with a consumer `tensor.expand_shape` by
/// matching constant output_shape operands of the expand. This makes the
/// `tensor.expand_shape` more static and creates a consumer cast that can be
/// propagated further.
struct ConvertToStaticExpandShape : public OpRewritePattern<ExpandShapeOp> {
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Can you please document the pattern with a high-level description of what this pattern is doing? That'll be useful to future folks having to debug or improve this :)
(or just skimming the codebase).

Thanks.

using OpRewritePattern<ExpandShapeOp>::OpRewritePattern;

LogicalResult matchAndRewrite(ExpandShapeOp expandOp,
PatternRewriter &rewriter) const override {
auto castOp = expandOp.getSrc().getDefiningOp<CastOp>();
if (!canFoldIntoConsumerOp(castOp))
return failure();

ArrayRef<int64_t> castSrcShape = castOp.getSource().getType().getShape();
SmallVector<ReassociationIndices, 4> reassoc =
expandOp.getReassociationIndices();

SmallVector<int64_t> newOutputShape(expandOp.getResultType().getShape());
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

You should look for source of expandOp is a tensor.cast operation where the source of the cast has a more static shape than the result (using

bool canFoldIntoConsumerOp(CastOp castOp);
).

SmallVector<Value> dynamicOutputShape;
auto outputIt = expandOp.getOutputShape().begin();

for (const auto &[inputDim, innerReassoc] : llvm::enumerate(reassoc)) {
for (uint64_t outDim : innerReassoc) {
if (!ShapedType::isDynamic(newOutputShape[outDim]))
continue;

// If the cast's src type is dynamic, don't infer any of the
// corresponding expanded dimensions. `tensor.expand_shape` requires at
// least one of the expanded dimensions to be dynamic if the input is
// dynamic.
Value val = *outputIt;
++outputIt;
if (ShapedType::isDynamic(castSrcShape[inputDim])) {
dynamicOutputShape.push_back(val);
continue;
}

APInt cst;
if (matchPattern(val, m_ConstantInt(&cst))) {
newOutputShape[outDim] = cst.getSExtValue();
} else {
dynamicOutputShape.push_back(val);
}
}
}

// Couldn't match any values, nothing to change
if (expandOp.getOutputShape().size() == dynamicOutputShape.size())
return failure();

// Calculate the input shape from the output
SmallVector<int64_t> newInputShape(expandOp.getSrcType().getRank(), 1l);
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Do you need this? Isnt the input shape the same as the source of the cast operation?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

From the partial_sink_expand_of_cast test case:

  %0 = tensor.cast %arg0 : tensor<10x10xf32> to tensor<?x?xf32>
  %1 = tensor.expand_shape %0 [[0, 1], [2]] output_shape [%arg1, %arg2, %c10]
      : tensor<?x?xf32> into tensor<?x?x?xf32>

tensor.expand_shape's src type cannot become fully static because the op requires a dynamic input dim if the output is dynamic. The input cast becomes tensor<10x10xf32> to tensor<?x10xf32> instead of being fully removed. I could just bail on cases where not all SSA values can be matched (if the input dim can be made static). That way teh input shape would be the same as the tensor.cast at the cost of not being able to propagate any of the static dim info

for (auto inDim : llvm::seq<int>(0, newInputShape.size())) {
for (auto outDim : reassoc[inDim]) {
auto ofr = newOutputShape[outDim];
if (ShapedType::isDynamic(ofr)) {
newInputShape[inDim] = ShapedType::kDynamic;
break;
}
newInputShape[inDim] *= ofr;
}
}

SmallVector<OpFoldResult> outputOfr =
getMixedValues(newOutputShape, dynamicOutputShape, rewriter);
auto inputType = RankedTensorType::get(
newInputShape, expandOp.getSrcType().getElementType());
auto outputType = RankedTensorType::get(
newOutputShape, expandOp.getSrcType().getElementType());
auto inputCast = rewriter.create<CastOp>(expandOp.getLoc(), inputType,
expandOp.getSrc());
auto newExpand = rewriter.create<ExpandShapeOp>(
expandOp.getLoc(), outputType, inputCast.getResult(),
expandOp.getReassociationIndices(), outputOfr);
rewriter.replaceOpWithNewOp<CastOp>(expandOp, expandOp.getType(),
newExpand.getResult());
return success();
}
};
} // namespace

void ExpandShapeOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<
ComposeReassociativeReshapeOps<ExpandShapeOp, ReshapeOpKind::kExpand>,
ComposeExpandOfCollapseOp<ExpandShapeOp, CollapseShapeOp>,
FoldReshapeWithConstant<ExpandShapeOp>,
ConvertToStaticExpandShape, FoldReshapeWithConstant<ExpandShapeOp>,
FoldReshapeWithSplat<ExpandShapeOp>,
FoldReshapeWithFromElements<ExpandShapeOp>, FoldDimOfExpandShape,
FoldDimOfCollapseShape>(context);
Expand Down
54 changes: 54 additions & 0 deletions mlir/test/Dialect/Tensor/canonicalize.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -2718,3 +2718,57 @@ func.func @pack_dont_drop_attributes(%arg0: tensor<?x?x?xf16>, %arg1: tensor<128
%pack = tensor.pack %arg0 padding_value(%cst : f16) outer_dims_perm = [0, 1, 2] inner_dims_pos = [1, 2] inner_tiles = [16, 1] into %arg1 {test_attr} : tensor<?x?x?xf16> -> tensor<128x?x100x16x1xf16>
return %pack : tensor<128x?x100x16x1xf16>
}

// -----

func.func @fold_expand_of_cast(%arg0 : tensor<10x10xf32>)
-> tensor<10x1x10xf32> {
%c1 = arith.constant 1 : index
%c10 = arith.constant 10 : index
%0 = tensor.cast %arg0 : tensor<10x10xf32> to tensor<?x?xf32>
%1 = tensor.expand_shape %0 [[0, 1], [2]] output_shape [%c10, %c1, %c10]
: tensor<?x?xf32> into tensor<?x?x?xf32>
%2 = tensor.cast %1 : tensor<?x?x?xf32> to tensor<10x1x10xf32>
return %2 : tensor<10x1x10xf32>
}
// CHECK-LABEL: func.func @fold_expand_of_cast
// CHECK: %[[RES:.+]] = tensor.expand_shape %{{.*}} {{\[}}[0, 1], [2]] output_shape [10, 1, 10]
// CHECK: return %[[RES]]

// -----

func.func @sink_expand_of_cast(%arg0 : tensor<?x10xf32>)
-> tensor<?x?x?xf32> {
%c1 = arith.constant 1 : index
%c10 = arith.constant 10 : index
%0 = tensor.cast %arg0 : tensor<?x10xf32> to tensor<?x?xf32>
%1 = tensor.expand_shape %0 [[0, 1], [2]] output_shape [%c10, %c1, %c10]
: tensor<?x?xf32> into tensor<?x?x?xf32>
return %1 : tensor<?x?x?xf32>
}
// CHECK-LABEL: func.func @sink_expand_of_cast
// CHECK-DAG: %[[C10:.*]] = arith.constant 10
// CHECK-DAG: %[[C1:.*]] = arith.constant 1
// CHECK: %[[EXPAND:.+]] = tensor.expand_shape %{{.*}} {{\[}}[0, 1], [2]]
// CHECK-SAME: output_shape [%[[C10]], %[[C1]], 10]
// CHECK: %[[RES:.+]] = tensor.cast %[[EXPAND]]
// CHECK: return %[[RES]]

// -----

func.func @partial_sink_expand_of_cast(%arg0 : tensor<10x10xf32>, %arg1 : index, %arg2 : index)
-> tensor<?x?x?xf32> {
%c10 = arith.constant 10 : index
%0 = tensor.cast %arg0 : tensor<10x10xf32> to tensor<?x?xf32>
%1 = tensor.expand_shape %0 [[0, 1], [2]] output_shape [%arg1, %arg2, %c10]
: tensor<?x?xf32> into tensor<?x?x?xf32>
return %1 : tensor<?x?x?xf32>
}
// CHECK-LABEL: func.func @partial_sink_expand_of_cast
// CHECK: %[[CAST:.+]] = tensor.cast
// CHECK-SAME: tensor<10x10xf32> to tensor<?x10xf32>
// CHECK: %[[EXPAND:.+]] = tensor.expand_shape %{{.*}} {{\[}}[0, 1], [2]]
// CHECK-SAME: output_shape [%{{.*}}, %{{.*}}, 10]
// CHECK: %[[RES:.+]] = tensor.cast %[[EXPAND]]
// CHECK-SAME: tensor<?x?x10xf32> to tensor<?x?x?xf32>
// CHECK: return %[[RES]]
Loading