@@ -98,7 +98,7 @@ async def query_vector(self, embedding: NDArray, k: int, score_threshold: float)
9898        Returns: 
9999            QueryChunksResponse with chunks and scores 
100100        """ 
101-         log .info (
101+         log .debug (
102102            f"WEAVIATE VECTOR SEARCH CALLED: embedding_shape={ embedding .shape } { k } { score_threshold }  
103103        )
104104        sanitized_collection_name  =  sanitize_collection_name (self .collection_name , weaviate_format = True )
@@ -135,7 +135,7 @@ async def query_vector(self, embedding: NDArray, k: int, score_threshold: float)
135135            chunks .append (chunk )
136136            scores .append (score )
137137
138-         log .info (f"WEAVIATE VECTOR SEARCH RESULTS: Found { len (chunks )} { scores }  )
138+         log .debug (f"WEAVIATE VECTOR SEARCH RESULTS: Found { len (chunks )} { scores }  )
139139        return  QueryChunksResponse (chunks = chunks , scores = scores )
140140
141141    async  def  delete (self , chunk_ids : list [str ] |  None  =  None ) ->  None :
@@ -166,7 +166,7 @@ async def query_keyword(
166166        Returns: 
167167            QueryChunksResponse with chunks and scores 
168168        """ 
169-         log .info (f"WEAVIATE KEYWORD SEARCH CALLED: query='{ query_string } { k } { score_threshold }  )
169+         log .debug (f"WEAVIATE KEYWORD SEARCH CALLED: query='{ query_string } { k } { score_threshold }  )
170170        sanitized_collection_name  =  sanitize_collection_name (self .collection_name , weaviate_format = True )
171171        collection  =  self .client .collections .get (sanitized_collection_name )
172172
@@ -199,7 +199,7 @@ async def query_keyword(
199199            chunks .append (chunk )
200200            scores .append (score )
201201
202-         log .info (f"WEAVIATE KEYWORD SEARCH RESULTS: Found { len (chunks )} { scores }  )
202+         log .debug (f"WEAVIATE KEYWORD SEARCH RESULTS: Found { len (chunks )} { scores }  )
203203        return  QueryChunksResponse (chunks = chunks , scores = scores )
204204
205205    async  def  query_hybrid (
@@ -223,7 +223,7 @@ async def query_hybrid(
223223        Returns: 
224224            QueryChunksResponse with combined results 
225225        """ 
226-         log .info (
226+         log .debug (
227227            f"WEAVIATE HYBRID SEARCH CALLED: query='{ query_string } { embedding .shape } { k } { score_threshold } { reranker_type }  
228228        )
229229        sanitized_collection_name  =  sanitize_collection_name (self .collection_name , weaviate_format = True )
@@ -265,11 +265,10 @@ async def query_hybrid(
265265            if  score  <  score_threshold :
266266                continue 
267267
268-             log .info (f"Document { chunk .metadata .get ('document_id' )} { score }  )
269268            chunks .append (chunk )
270269            scores .append (score )
271270
272-         log .info (f"WEAVIATE HYBRID SEARCH RESULTS: Found { len (chunks )} { scores }  )
271+         log .debug (f"WEAVIATE HYBRID SEARCH RESULTS: Found { len (chunks )} { scores }  )
273272        return  QueryChunksResponse (chunks = chunks , scores = scores )
274273
275274
@@ -297,7 +296,7 @@ def __init__(
297296
298297    def  _get_client (self ) ->  weaviate .WeaviateClient :
299298        if  "localhost"  in  self .config .weaviate_cluster_url :
300-             log .info ("using  Weaviate locally in container" )
299+             log .info ("Using  Weaviate locally in container" )
301300            host , port  =  self .config .weaviate_cluster_url .split (":" )
302301            key  =  "local_test" 
303302            client  =  weaviate .connect_to_local (
0 commit comments