-
Notifications
You must be signed in to change notification settings - Fork 56
Building TensorFlow Serving
The instructions provided here specify the steps to build TensorFlow Serving version 2.5.1 on Linux on IBM Z for the following distributions:
- Ubuntu (18.04, 20.04, 21.04)
- When following the steps below please use a standard permission user unless otherwise specified.
- A directory
/<source_root>/
will be referred to in these instructions, this is a temporary writable directory anywhere you'd like to place it.
TensorFlow Serving can be built manually using STEP 1.2.
Use the following commands to build TensorFlow Serving using the build script. Please ensure wget
is installed.
wget -q https://raw.githubusercontent.com/linux-on-ibm-z/scripts/master/TensorflowServing/2.5.1/build_tensorflow_serving.sh
bash build_tensorflow_serving.sh [Provide -t option for executing build with tests]
If the build completes successfully, go to STEP 2. In case of error, check logs
for more details or go to STEP 1.2 to follow manual build steps.
export SOURCE_ROOT=/<source_root>/
- Ubuntu 18.04
sudo apt-get update
sudo apt-get install sudo wget git unzip zip python3-dev python3-pip openjdk-11-jdk pkg-config libhdf5-dev libssl-dev libblas-dev liblapack-dev gfortran -y
sudo ldconfig
sudo pip3 install --upgrade pip
sudo pip3 install --no-cache-dir numpy==1.19.5 wheel scipy portpicker protobuf==3.13.0
sudo pip3 install keras_preprocessing --no-deps
- Ubuntu 20.04
sudo apt-get update
sudo apt-get install sudo wget git unzip zip python3-dev python3-pip openjdk-11-jdk pkg-config libhdf5-dev libssl-dev libblas-dev liblapack-dev gfortran -y
sudo ldconfig
sudo pip3 install --upgrade pip
sudo pip3 install --no-cache-dir numpy==1.19.5 wheel scipy==1.6.3 portpicker protobuf==3.13.0
sudo pip3 install keras_preprocessing --no-deps
- Ubuntu 21.04
sudo apt-get update
sudo apt-get install sudo wget git unzip zip python3-dev python3-pip openjdk-11-jdk pkg-config libhdf5-dev libssl-dev libblas-dev liblapack-dev gfortran -y
sudo ldconfig
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-7 60 --slave /usr/bin/g++ g++ /usr/bin/g++-7
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-10 40 --slave /usr/bin/g++ g++ /usr/bin/g++-10
sudo update-alternatives --auto gcc
sudo pip3 install --upgrade pip
sudo pip3 install --no-cache-dir numpy==1.19.5 wheel scipy==1.6.3 portpicker protobuf==3.13.0
sudo pip3 install keras_preprocessing --no-deps
- Ensure
/usr/bin/python
points to Python3 to build TensorFlow in a Python3 environment
sudo update-alternatives --install /usr/bin/python python /usr/bin/python3 40
- Install grpcio
export GRPC_PYTHON_BUILD_SYSTEM_OPENSSL=True
sudo -E pip3 install grpcio
-
Build Bazel v3.7.2 -- Instructions for building Bazel can be found here.
Note: Bazel community has not officially supported Ubuntu 20.04 and Ubuntu 21.04 yet, but you could still follow the building instruction above to build Bazel on Ubuntu 20.04 and Ubuntu 21.04. Please note that if you intend to use the build script of bazel on Ubuntu 20.04 or Ubuntu 21.04, you will need to edit line 211 to change"ubuntu-18.04"
into"ubuntu-18.04" | "ubuntu-20.04" | "ubuntu-21.04"
. -
Build TensorFlow v2.5.0 -- Instructions for building Tensorflow can be found here.
-
Download source code and apply patch for s390x support
cd $SOURCE_ROOT wget https://github.com/google/boringssl/archive/80ca9f9f6ece29ab132cce4cf807a9465a18cfac.tar.gz tar -zxvf 80ca9f9f6ece29ab132cce4cf807a9465a18cfac.tar.gz mv boringssl-80ca9f9f6ece29ab132cce4cf807a9465a18cfac/ boringssl/ cd boringssl/ sed -i '/set(ARCH "ppc64le")/a \elseif (${CMAKE_SYSTEM_PROCESSOR} STREQUAL "s390x")\n\ set(ARCH "s390x")' src/CMakeLists.txt sed -i '/OPENSSL_PNACL/a \#elif defined(__s390x__)\n\#define OPENSSL_64_BIT' src/include/openssl/base.h
-
Download source code
cd $SOURCE_ROOT git clone https://github.com/tensorflow/serving cd serving git checkout 2.5.1
-
Apply patches
export PATCH_URL="https://raw.githubusercontent.com/linux-on-ibm-z/scripts/master/TensorflowServing/2.5.1/patch" wget -O tfs_patch.diff $PATCH_URL/tfs_patch.diff sed -i "s?source_root?$SOURCE_ROOT?" tfs_patch.diff git apply tfs_patch.diff cd $SOURCE_ROOT/tensorflow wget -O tf_patch.diff $PATCH_URL/tf_patch.diff git apply tf_patch.diff
-
Build TensorFlow Serving
Tensorflow Serving can be built as follows:
- To build entire tree:
cd $SOURCE_ROOT/serving bazel --host_jvm_args="-Xms1024m" --host_jvm_args="-Xmx2048m" build --verbose_failures -c opt tensorflow_serving/...
- To build tensorflow_model_server target:
cd $SOURCE_ROOT/serving bazel --host_jvm_args="-Xms1024m" --host_jvm_args="-Xmx2048m" build --verbose_failures -c opt tensorflow_serving/model_servers:tensorflow_model_server
Note: TensorFlow Serving build is resource intensive operation. If build continues to fail try increasing the swap space and reduce the number of concurrent jobs by specifying
--jobs=n
in the build command above, wheren
is the number of concurrent jobs.Copy binary to access it from anywhere, make sure /usr/local/bin is in $PATH. Run command:
cp bazel-bin/tensorflow_serving/model_servers/tensorflow_model_server /usr/local/bin/. tensorflow_model_server --version
sudo pip3 install tensorflow-serving-api==2.5.1
-
Run TensorFlow Serving from command Line
tensorflow_model_server --rest_api_port=8501 --model_name=<model_name> --model_base_path=<model_path> & curl -d '{"instances": [1.0, 2.0, 5.0]}' -X POST http://localhost:8501/v1/models/<model_name>:predict
- For example:
export TESTDATA="$SOURCE_ROOT/serving/tensorflow_serving/servables/tensorflow/testdata" tensorflow_model_server --rest_api_port=8501 --model_name=half_plus_two --model_base_path=$TESTDATA/saved_model_half_plus_two_cpu & curl -d '{"instances": [1.0, 2.0, 5.0]}' -X POST http://localhost:8501/v1/models/half_plus_two:predict
Output should look like:
{ "predictions": [2.5, 3.0, 4.5 ] }
-
Run complete testsuite
cd $SOURCE_ROOT/serving bazel --host_jvm_args="-Xms1024m" --host_jvm_args="-Xmx2048m" test --test_tag_filters=-gpu,-benchmark-test -k --build_tests_only --test_output=errors --verbose_failures -c opt tensorflow_serving/...
Note:
tensorflow_model_server_test
,//tensorflow_serving/servables/tensorflow:tflite_interpreter_pool_test
,tflite_session_test
andsaved_model_bundle_factory_test
testcases require model files to be regenerated on s390x. Fortflite
, create and use new model files using (Please modify the python library path based on your local environment and python version):cd $SOURCE_ROOT/tensorflow bazel build --host_javabase="@local_jdk//:jdk" //tensorflow/lite/tools/signature:signature_def_utils cp -r bazel-bin/tensorflow/lite/tools/signature/* tensorflow/lite/tools/signature/ sudo rm -rf /usr/local/lib/python3.8/dist-packages/tensorflow/lite/tools sudo ln -s $SOURCE_ROOT/tensorflow/tensorflow/lite/tools /usr/local/lib/python3.6/dist-packages/tensorflow/lite/tools sudo rm -rf /tmp/saved_model_half_plus_two* sudo python $SOURCE_ROOT/serving/tensorflow_serving/servables/tensorflow/testdata/saved_model_half_plus_two.py sudo cp /tmp/saved_model_half_plus_two_tflite/model.tflite $SOURCE_ROOT/serving/tensorflow_serving/servables/tensorflow/testdata/saved_model_half_plus_two_tflite/00000123/ sudo cp /tmp/saved_model_half_plus_two_tflite_with_sigdef/model.tflite $SOURCE_ROOT/serving/tensorflow_serving/servables/tensorflow/testdata/saved_model_half_plus_two_tflite_with_sigdef/00000123/ mkdir /tmp/parse_example_tflite python $SOURCE_ROOT/serving/tensorflow_serving/servables/tensorflow/testdata/parse_example_tflite.py cp /tmp/parse_example_tflite/model.tflite $SOURCE_ROOT/serving/tensorflow_serving/servables/tensorflow/testdata/parse_example_tflite/00000123/model.tflite
Note: The test case
tensorflow_model_server_test
may still fail after regenerating the models. The core issue of the test case is that the underlying TF Text model is using Little Endian ICU normalizer, investigation is underway for how to regenerate the model after solving the ICU issue: https://github.com/tensorflow/serving/issues/1897Note: The test case
tflite_interpreter_pool_test
may still fail after regenerating the models. This is because one of the model it uses (MobileNetModel) could not be generated in open source release of TensorFlow Serving
The information provided in this article is accurate at the time of writing, but on-going development in the open-source projects involved may make the information incorrect or obsolete. Please open issue or contact us on IBM Z Community if you have any questions or feedback.