1- """A module which implements the time frequency estimation.
1+ """A module which implements the time- frequency estimation.
22
33Morlet code inspired by Matlab code from Sheraz Khan & Brainstorm & SPM
44"""
@@ -172,7 +172,7 @@ def _cwt(X, Ws, mode="same", decim=1, use_fft=True):
172172 mode : {'full', 'valid', 'same'}
173173 See numpy.convolve.
174174 decim : int | slice, defaults to 1
175- To reduce memory usage, decimation factor after time frequency
175+ To reduce memory usage, decimation factor after time- frequency
176176 decomposition.
177177 If `int`, returns tfr[..., ::decim].
178178 If `slice` returns tfr[..., decim].
@@ -183,7 +183,7 @@ def _cwt(X, Ws, mode="same", decim=1, use_fft=True):
183183 Returns
184184 -------
185185 out : array, shape (n_signals, n_freqs, n_time_decim)
186- The time frequency transform of the signals.
186+ The time- frequency transform of the signals.
187187 """
188188 if mode not in ['same' , 'valid' , 'full' ]:
189189 raise ValueError ("`mode` must be 'same', 'valid' or 'full', "
@@ -252,7 +252,7 @@ def _compute_tfr(epoch_data, frequencies, sfreq=1.0, method='morlet',
252252 n_cycles = 7.0 , zero_mean = None , time_bandwidth = 4.0 ,
253253 use_fft = True , decim = 1 , output = 'complex' , n_jobs = 1 ,
254254 verbose = None ):
255- """Computes time frequency transforms.
255+ """Computes time- frequency transforms.
256256
257257 Parameters
258258 ----------
@@ -263,7 +263,7 @@ def _compute_tfr(epoch_data, frequencies, sfreq=1.0, method='morlet',
263263 sfreq : float | int, defaults to 1.0
264264 Sampling frequency of the data.
265265 method : 'multitaper' | 'morlet', defaults to 'morlet'
266- The time frequency method. 'morlet' convolves a Morlet wavelet.
266+ The time- frequency method. 'morlet' convolves a Morlet wavelet.
267267 'multitaper' convolves DPSS tapers.
268268 n_cycles : float | array of float, defaults to 7.0
269269 Number of cycles in the Morlet wavelet. Fixed number
@@ -278,11 +278,13 @@ def _compute_tfr(epoch_data, frequencies, sfreq=1.0, method='morlet',
278278 use_fft : bool, defaults to True
279279 Use the FFT for convolutions or not.
280280 decim : int | slice, defaults to 1
281- To reduce memory usage, decimation factor after time frequency
281+ To reduce memory usage, decimation factor after time- frequency
282282 decomposition.
283- If `int`, returns tfr[..., ::decim].
284- If `slice` returns tfr[..., decim].
285- .. note: Decimation may create aliasing artifacts.
283+ If `int`, returns tfr[..., ::decim],
284+ if `slice` returns tfr[..., decim].
285+ .. note:
286+ Decimation may create aliasing artifacts, yet decimation
287+ is done after the convolutions.
286288 output : str, defaults to 'complex'
287289
288290 * 'complex' : single trial complex.
@@ -400,7 +402,7 @@ def _compute_tfr(epoch_data, frequencies, sfreq=1.0, method='morlet',
400402def _time_frequency_loop (X , Ws , output , use_fft , mode , decim ):
401403 """Aux. function to _compute_tfr.
402404
403- Loops time frequency transform across wavelets and epochs.
405+ Loops time- frequency transform across wavelets and epochs.
404406
405407 Parameters
406408 ----------
@@ -507,7 +509,7 @@ def cwt_morlet(X, sfreq, freqs, use_fft=True, n_cycles=7.0, zero_mean=False,
507509 zero_mean : bool
508510 Make sure the wavelets have a mean of zero.
509511 decim : int | slice
510- To reduce memory usage, decimation factor after time frequency
512+ To reduce memory usage, decimation factor after time- frequency
511513 decomposition.
512514 If `int`, returns tfr[..., ::decim].
513515 If `slice` returns tfr[..., decim].
@@ -521,7 +523,7 @@ def cwt_morlet(X, sfreq, freqs, use_fft=True, n_cycles=7.0, zero_mean=False,
521523
522524 See Also
523525 --------
524- tfr.cwt : Compute time frequency decomposition with user-provided wavelets
526+ tfr.cwt : Compute time- frequency decomposition with user-provided wavelets
525527 """
526528 mode = 'same'
527529 # mode = "valid"
@@ -555,7 +557,7 @@ def cwt(X, Ws, use_fft=True, mode='same', decim=1):
555557 Convention for convolution. 'full' is currently not implemented with
556558 `use_fft=False`. Defaults to 'same'.
557559 decim : int | slice
558- To reduce memory usage, decimation factor after time frequency
560+ To reduce memory usage, decimation factor after time- frequency
559561 decomposition.
560562 If `int`, returns tfr[..., ::decim].
561563 If `slice` returns tfr[..., decim].
@@ -565,11 +567,11 @@ def cwt(X, Ws, use_fft=True, mode='same', decim=1):
565567 Returns
566568 -------
567569 tfr : array, shape (n_signals, n_frequencies, n_times)
568- The time frequency decompositions.
570+ The time- frequency decompositions.
569571
570572 See Also
571573 --------
572- mne.time_frequency.cwt_morlet : Compute time frequency decomposition
574+ mne.time_frequency.cwt_morlet : Compute time- frequency decomposition
573575 with Morlet wavelets
574576 """
575577 decim = _check_decim (decim )
@@ -590,7 +592,7 @@ def cwt(X, Ws, use_fft=True, mode='same', decim=1):
590592def single_trial_power (data , sfreq , frequencies , use_fft = True , n_cycles = 7 ,
591593 baseline = None , baseline_mode = 'ratio' , times = None ,
592594 decim = 1 , n_jobs = 1 , zero_mean = False , verbose = None ):
593- """Compute time frequency power on single epochs
595+ """Compute time- frequency power on single epochs
594596
595597 Parameters
596598 ----------
@@ -626,7 +628,7 @@ def single_trial_power(data, sfreq, frequencies, use_fft=True, n_cycles=7,
626628 times : array
627629 Required to define baseline
628630 decim : int | slice
629- To reduce memory usage, decimation factor after time frequency
631+ To reduce memory usage, decimation factor after time- frequency
630632 decomposition.
631633 If `int`, returns tfr[..., ::decim].
632634 If `slice` returns tfr[..., decim].
@@ -654,7 +656,7 @@ def single_trial_power(data, sfreq, frequencies, use_fft=True, n_cycles=7,
654656
655657 parallel , my_cwt , _ = parallel_func (cwt , n_jobs )
656658
657- logger .info ("Computing time frequency power on single epochs..." )
659+ logger .info ("Computing time- frequency power on single epochs..." )
658660
659661 power = np .empty ((n_epochs , n_channels , n_frequencies , n_times ),
660662 dtype = np .float )
@@ -741,18 +743,18 @@ def tfr_morlet(inst, freqs, n_cycles, use_fft=False, return_itc=True, decim=1,
741743 use_fft : bool, defaults to False
742744 The fft based convolution or not.
743745 return_itc : bool, defaults to True
744- Return intertrial coherence (ITC) as well as averaged power.
746+ Return inter-trial coherence (ITC) as well as averaged power.
745747 Must be ``False`` for evoked data.
746748 decim : int | slice, defaults to 1
747- To reduce memory usage, decimation factor after time frequency
749+ To reduce memory usage, decimation factor after time- frequency
748750 decomposition.
749751 If `int`, returns tfr[..., ::decim].
750752 If `slice` returns tfr[..., decim].
751753 .. note: Decimation may create aliasing artifacts.
752754 n_jobs : int, defaults to 1
753755 The number of jobs to run in parallel.
754756 picks : array-like of int | None, defaults to None
755- The indices of the channels to plot. If None all available
757+ The indices of the channels to plot. If None, all available
756758 channels are displayed.
757759 zero_mean : bool, defaults to True
758760 Make sure the wavelet has a mean of zero.
@@ -770,7 +772,7 @@ def tfr_morlet(inst, freqs, n_cycles, use_fft=False, return_itc=True, decim=1,
770772 power : AverageTFR | EpochsTFR
771773 The averaged power.
772774 itc : AverageTFR | EpochsTFR
773- The intertrial coherence (ITC). Only returned if return_itc
775+ The inter-trial coherence (ITC). Only returned if return_itc
774776 is True.
775777
776778 See Also
@@ -798,7 +800,7 @@ def tfr_multitaper(inst, freqs, n_cycles, time_bandwidth=4.0,
798800 n_cycles : float | ndarray, shape (n_freqs,)
799801 The number of cycles globally or for each frequency.
800802 The time-window length is thus T = n_cycles / freq.
801- time_bandwidth : float, (optional), default is 4.0 (3 good tapers).
803+ time_bandwidth : float, (optional), defaults to 4.0 (3 good tapers).
802804 Time x (Full) Bandwidth product. Should be >= 2.0.
803805 Choose this along with n_cycles to get desired frequency resolution.
804806 The number of good tapers (least leakage from far away frequencies)
@@ -808,17 +810,17 @@ def tfr_multitaper(inst, freqs, n_cycles, time_bandwidth=4.0,
808810 use_fft : bool, defaults to True
809811 The fft based convolution or not.
810812 return_itc : bool, defaults to True
811- Return intertrial coherence (ITC) as well as averaged power.
813+ Return inter-trial coherence (ITC) as well as averaged power.
812814 decim : int | slice, defaults to 1
813- To reduce memory usage, decimation factor after time frequency
815+ To reduce memory usage, decimation factor after time- frequency
814816 decomposition.
815817 If `int`, returns tfr[..., ::decim].
816818 If `slice` returns tfr[..., decim].
817819 .. note: Decimation may create aliasing artifacts.
818820 n_jobs : int, defaults to 1
819821 The number of jobs to run in parallel.
820822 picks : array-like of int | None, defaults to None
821- The indices of the channels to plot. If None all available
823+ The indices of the channels to plot. If None, all available
822824 channels are displayed.
823825 average : bool, defaults to True
824826 If True average accross Epochs.
@@ -832,7 +834,7 @@ def tfr_multitaper(inst, freqs, n_cycles, time_bandwidth=4.0,
832834 power : AverageTFR | EpochsTFR
833835 The averaged power.
834836 itc : AverageTFR | EpochsTFR
835- The intertrial coherence (ITC). Only returned if return_itc
837+ The inter-trial coherence (ITC). Only returned if return_itc
836838 is True.
837839
838840 See Also
@@ -857,7 +859,7 @@ def ch_names(self):
857859 return self .info ['ch_names' ]
858860
859861 def crop (self , tmin = None , tmax = None ):
860- """Crop data to a given time interval
862+ """Crop data to a given time interval in place
861863
862864 Parameters
863865 ----------
@@ -914,7 +916,7 @@ def apply_baseline(self, baseline, mode='mean', verbose=None):
914916class AverageTFR (_BaseTFR ):
915917 """Container for Time-Frequency data
916918
917- Can for example store induced power at sensor level or intertrial
919+ Can for example store induced power at sensor level or inter-trial
918920 coherence.
919921
920922 Parameters
@@ -1114,7 +1116,7 @@ def _onselect(self, eclick, erelease, baseline, mode, layout):
11141116 fmax = min (self .freqs , key = lambda x : abs (x - fmax ))
11151117 if tmin == tmax or fmin == fmax :
11161118 logger .info ('The selected area is too small. '
1117- 'Select a larger time frequency window.' )
1119+ 'Select a larger time- frequency window.' )
11181120 return
11191121
11201122 types = list ()
@@ -1150,7 +1152,7 @@ def plot_topo(self, picks=None, baseline=None, mode='mean', tmin=None,
11501152 Parameters
11511153 ----------
11521154 picks : array-like of int | None
1153- The indices of the channels to plot. If None all available
1155+ The indices of the channels to plot. If None, all available
11541156 channels are displayed.
11551157 baseline : None (default) or tuple of length 2
11561158 The time interval to apply baseline correction.
@@ -1257,7 +1259,7 @@ def plot_topo(self, picks=None, baseline=None, mode='mean', tmin=None,
12571259 return fig
12581260
12591261 def _check_compat (self , tfr ):
1260- """checks that self and tfr have the same time frequency ranges"""
1262+ """checks that self and tfr have the same time- frequency ranges"""
12611263 assert np .all (tfr .times == self .times )
12621264 assert np .all (tfr .freqs == self .freqs )
12631265
@@ -1306,7 +1308,7 @@ def save(self, fname, overwrite=False):
13061308class EpochsTFR (_BaseTFR ):
13071309 """Container for Time-Frequency data on epochs
13081310
1309- Can for example store induced power at sensor level or intertrial
1311+ Can for example store induced power at sensor level or inter-trial
13101312 coherence.
13111313
13121314 Parameters
@@ -1603,7 +1605,7 @@ def read_tfrs(fname, condition=None):
16031605 if condition not in tfr_dict :
16041606 keys = ['%s' % k for k in tfr_dict ]
16051607 raise ValueError ('Cannot find condition ("{0}") in this file. '
1606- 'I can give you "{1}""'
1608+ 'The file contains "{1}""'
16071609 .format (condition , " or " .join (keys )))
16081610 out = AverageTFR (** tfr_dict [condition ])
16091611 else :
0 commit comments