Skip to content

[SYCL][MATRIX][CUDA] impl/tests for bf16, (u)int8, and half. #5009

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 22 commits into from
Jan 20, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion sycl/include/sycl/ext/oneapi/matrix/matrix-aot-amx.hpp
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
//===-------------- matrix-amx.hpp - SYCL matrix --------------*- C++ -*---===//
//===------------ matrix-aot-amx.hpp - SYCL matrix ------------*- C++ -*---===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
Expand Down
2 changes: 1 addition & 1 deletion sycl/include/sycl/ext/oneapi/matrix/matrix-jit.hpp
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
//==------------------ matrix.hpp - SYCL matrix ----------------*- C++ -*---==//
//==---------------- matrix-jit.hpp - SYCL matrix --------------*- C++ -*---==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
Expand Down
524 changes: 387 additions & 137 deletions sycl/include/sycl/ext/oneapi/matrix/matrix-tensorcore.hpp

Large diffs are not rendered by default.

199 changes: 199 additions & 0 deletions sycl/test/check_device_code/matrix/matrix-nvptx-bf16-test.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,199 @@
// REQUIRES: cuda

// RUN: %clangxx -fsycl-device-only -fsycl-targets=nvptx64-nvidia-cuda -Xsycl-target-backend --cuda-gpu-arch=sm_80 -DSYCL_EXT_ONEAPI_MATRIX=3 -S -Xclang -emit-llvm %s -o -| FileCheck %s

#include <CL/sycl.hpp>

using namespace sycl;
using namespace sycl::ext::oneapi::experimental::matrix;

constexpr int stride = 16;

int main() {

buffer<uint16_t, 1> bufA(nullptr, range<1>(1));
buffer<uint16_t, 1> bufB(nullptr, range<1>(1));
buffer<float, 1> bufC(nullptr, range<1>(1));
buffer<float, 1> bufD(nullptr, range<1>(1));

queue q;

q.submit([&](handler &cgh) {
auto accC = bufC.get_access<access::mode::read_write>(cgh);
auto accA = bufA.get_access<access::mode::read_write>(cgh);
auto accB = bufB.get_access<access::mode::read_write>(cgh);
auto accD = bufD.get_access<access::mode::read_write>(cgh);

cgh.parallel_for<class row_row_m16n16k16>(
nd_range<2>({1, 32}, {1, 32}),
[=](nd_item<2> item) [[sycl::reqd_work_group_size(1, 1, 32)]] {
sycl::sub_group sg = item.get_sub_group();

joint_matrix<float, matrix_use::accumulator, 16, 16,
matrix_layout::row_major>
sub_c;

joint_matrix<uint16_t, matrix_use::a, 16, 16,
matrix_layout::row_major>
sub_a;

joint_matrix<uint16_t, matrix_use::b, 16, 16,
matrix_layout::row_major>
sub_b;

// CHECK: tail call { float, float, float, float, float, float, float, float } @llvm.nvvm.wmma.m16n16k16.load.c.row.stride.f32.p1f32(float addrspace(1)* %_arg_, i32 16) #{{.*}}
joint_matrix_load(sg, sub_c, accC.get_pointer(), stride);
// CHECK: tail call { i32, i32, i32, i32 } @llvm.nvvm.wmma.m16n16k16.load.a.row.stride.bf16.p0i32(i32* %call.ascast.i.i49.i, i32 16) #{{.*}}
joint_matrix_load(sg, sub_a, accA.get_pointer(), stride);
// CHECK: tail call { i32, i32, i32, i32 } @llvm.nvvm.wmma.m16n16k16.load.b.row.stride.bf16.p0i32(i32* %call.ascast.i.i.i, i32 16) #{{.*}}
joint_matrix_load(sg, sub_b, accB.get_pointer(), stride);
// CHECK: tail call { float, float, float, float, float, float, float, float } @llvm.nvvm.wmma.m16n16k16.mma.row.row.bf16(i32 %11, i32 %12, i32 %13, i32 %14, i32 %17, i32 %18, i32 %19, i32 %20, float %1, float %2, float %3, float %4, float %5, float %6, float %7, float %8) #{{.*}}
sub_c = joint_matrix_mad(sg, sub_a, sub_b, sub_c);
// CHECK: tail call void @llvm.nvvm.wmma.m16n16k16.store.d.row.stride.f32.p1f32(float addrspace(1)* %_arg_14, float %22, float %23, float %24, float %25, float %26, float %27, float %28, float %29, i32 16) #{{.*}}
joint_matrix_store(sg, sub_c, accD.get_pointer(), stride);
});

cgh.parallel_for<class col_col_m16n16k16>(
nd_range<2>({1, 32}, {1, 32}),
[=](nd_item<2> item) [[sycl::reqd_work_group_size(1, 1, 32)]] {
sycl::sub_group sg = item.get_sub_group();

joint_matrix<float, matrix_use::accumulator, 16, 16,
matrix_layout::col_major>
sub_c;

joint_matrix<uint16_t, matrix_use::a, 16, 16,
matrix_layout::col_major>
sub_a;

joint_matrix<uint16_t, matrix_use::b, 16, 16,
matrix_layout::col_major>
sub_b;

// CHECK: tail call { float, float, float, float, float, float, float, float } @llvm.nvvm.wmma.m16n16k16.load.c.col.stride.f32.p1f32(float addrspace(1)* %_arg_, i32 16) #{{.*}}
joint_matrix_load(sg, sub_c, accC.get_pointer(), stride);
// CHECK: tail call { i32, i32, i32, i32 } @llvm.nvvm.wmma.m16n16k16.load.a.col.stride.bf16.p0i32(i32* %call.ascast.i.i49.i, i32 16) #{{.*}}
joint_matrix_load(sg, sub_a, accA.get_pointer(), stride);
// CHECK: tail call { i32, i32, i32, i32 } @llvm.nvvm.wmma.m16n16k16.load.b.col.stride.bf16.p0i32(i32* %call.ascast.i.i.i, i32 16) #{{.*}}
joint_matrix_load(sg, sub_b, accB.get_pointer(), stride);
// CHECK: tail call { float, float, float, float, float, float, float, float } @llvm.nvvm.wmma.m16n16k16.mma.col.col.bf16(i32 %11, i32 %12, i32 %13, i32 %14, i32 %17, i32 %18, i32 %19, i32 %20, float %1, float %2, float %3, float %4, float %5, float %6, float %7, float %8) #{{.*}}
sub_c = joint_matrix_mad(sg, sub_a, sub_b, sub_c);
// CHECK: tail call void @llvm.nvvm.wmma.m16n16k16.store.d.col.stride.f32.p1f32(float addrspace(1)* %_arg_14, float %22, float %23, float %24, float %25, float %26, float %27, float %28, float %29, i32 16) #{{.*}}
joint_matrix_store(sg, sub_c, accD.get_pointer(), stride);
});

cgh.parallel_for<class row_row_m32n8k16>(
nd_range<2>({1, 32}, {1, 32}),
[=](nd_item<2> item) [[sycl::reqd_work_group_size(1, 1, 32)]] {
sycl::sub_group sg = item.get_sub_group();

joint_matrix<float, matrix_use::accumulator, 32, 8,
matrix_layout::row_major>
sub_c;

joint_matrix<uint16_t, matrix_use::a, 32, 16,
matrix_layout::row_major>
sub_a;

joint_matrix<uint16_t, matrix_use::b, 16, 8, matrix_layout::row_major>
sub_b;

// CHECK: tail call { float, float, float, float, float, float, float, float } @llvm.nvvm.wmma.m32n8k16.load.c.row.stride.f32.p1f32(float addrspace(1)* %_arg_, i32 16) #{{.*}}
joint_matrix_load(sg, sub_c, accC.get_pointer(), stride);
// CHECK: tail call { i32, i32, i32, i32, i32, i32, i32, i32 } @llvm.nvvm.wmma.m32n8k16.load.a.row.stride.bf16.p0i32(i32* %call.ascast.i.i50.i, i32 16) #{{.*}}
joint_matrix_load(sg, sub_a, accA.get_pointer(), stride);
// CHECK: tail call { i32, i32 } @llvm.nvvm.wmma.m32n8k16.load.b.row.stride.bf16.p0i32(i32* %call.ascast.i.i.i, i32 16) #{{.*}}
joint_matrix_load(sg, sub_b, accB.get_pointer(), stride);
// CHECK: tail call { float, float, float, float, float, float, float, float } @llvm.nvvm.wmma.m32n8k16.mma.row.row.bf16(i32 %11, i32 %12, i32 %13, i32 %14, i32 %15, i32 %16, i32 %17, i32 %18, i32 %21, i32 %22, float %1, float %2, float %3, float %4, float %5, float %6, float %7, float %8) #{{.*}}
sub_c = joint_matrix_mad(sg, sub_a, sub_b, sub_c);
// CHECK: tail call void @llvm.nvvm.wmma.m32n8k16.store.d.row.stride.f32.p1f32(float addrspace(1)* %_arg_14, float %24, float %25, float %26, float %27, float %28, float %29, float %30, float %31, i32 16) #{{.*}}
joint_matrix_store(sg, sub_c, accD.get_pointer(), stride);
});

cgh.parallel_for<class col_col_m32n8k16>(
nd_range<2>({1, 32}, {1, 32}),
[=](nd_item<2> item) [[sycl::reqd_work_group_size(1, 1, 32)]] {
sycl::sub_group sg = item.get_sub_group();

joint_matrix<float, matrix_use::accumulator, 32, 8,
matrix_layout::col_major>
sub_c;

joint_matrix<uint16_t, matrix_use::a, 32, 16,
matrix_layout::col_major>
sub_a;

joint_matrix<uint16_t, matrix_use::b, 16, 8, matrix_layout::col_major>
sub_b;

// CHECK: tail call { float, float, float, float, float, float, float, float } @llvm.nvvm.wmma.m32n8k16.load.c.col.stride.f32.p1f32(float addrspace(1)* %_arg_, i32 16) #{{.*}}
joint_matrix_load(sg, sub_c, accC.get_pointer(), stride);
// CHECK: tail call { i32, i32, i32, i32, i32, i32, i32, i32 } @llvm.nvvm.wmma.m32n8k16.load.a.col.stride.bf16.p0i32(i32* %call.ascast.i.i50.i, i32 16) #{{.*}}
joint_matrix_load(sg, sub_a, accA.get_pointer(), stride);
// CHECK: tail call { i32, i32 } @llvm.nvvm.wmma.m32n8k16.load.b.col.stride.bf16.p0i32(i32* %call.ascast.i.i.i, i32 16) #{{.*}}
joint_matrix_load(sg, sub_b, accB.get_pointer(), stride);
// CHECK: tail call { float, float, float, float, float, float, float, float } @llvm.nvvm.wmma.m32n8k16.mma.col.col.bf16(i32 %11, i32 %12, i32 %13, i32 %14, i32 %15, i32 %16, i32 %17, i32 %18, i32 %21, i32 %22, float %1, float %2, float %3, float %4, float %5, float %6, float %7, float %8) #{{.*}}
sub_c = joint_matrix_mad(sg, sub_a, sub_b, sub_c);
// CHECK: tail call void @llvm.nvvm.wmma.m32n8k16.store.d.col.stride.f32.p1f32(float addrspace(1)* %_arg_14, float %24, float %25, float %26, float %27, float %28, float %29, float %30, float %31, i32 16) #{{.*}}
joint_matrix_store(sg, sub_c, accD.get_pointer(), stride);
});

cgh.parallel_for<class row_row_m8n32k16>(
nd_range<2>({1, 32}, {1, 32}),
[=](nd_item<2> item) [[sycl::reqd_work_group_size(1, 1, 32)]] {
sycl::sub_group sg = item.get_sub_group();

joint_matrix<float, matrix_use::accumulator, 8, 32,
matrix_layout::row_major>
sub_c;

joint_matrix<uint16_t, matrix_use::a, 8, 16, matrix_layout::row_major>
sub_a;

joint_matrix<uint16_t, matrix_use::b, 16, 32,
matrix_layout::row_major>
sub_b;

// CHECK: tail call { float, float, float, float, float, float, float, float } @llvm.nvvm.wmma.m8n32k16.load.c.row.stride.f32.p1f32(float addrspace(1)* %_arg_, i32 16) #{{.*}}
joint_matrix_load(sg, sub_c, accC.get_pointer(), stride);
// CHECK: tail call { i32, i32 } @llvm.nvvm.wmma.m8n32k16.load.a.row.stride.bf16.p0i32(i32* %call.ascast.i.i50.i, i32 16) #{{.*}}
joint_matrix_load(sg, sub_a, accA.get_pointer(), stride);
// CHECK: tail call { i32, i32, i32, i32, i32, i32, i32, i32 } @llvm.nvvm.wmma.m8n32k16.load.b.row.stride.bf16.p0i32(i32* %call.ascast.i.i.i, i32 16) #{{.*}}
joint_matrix_load(sg, sub_b, accB.get_pointer(), stride);
// CHECK: tail call { float, float, float, float, float, float, float, float } @llvm.nvvm.wmma.m8n32k16.mma.row.row.bf16(i32 %11, i32 %12, i32 %15, i32 %16, i32 %17, i32 %18, i32 %19, i32 %20, i32 %21, i32 %22, float %1, float %2, float %3, float %4, float %5, float %6, float %7, float %8) #{{.*}}
sub_c = joint_matrix_mad(sg, sub_a, sub_b, sub_c);
// CHECK: tail call void @llvm.nvvm.wmma.m8n32k16.store.d.row.stride.f32.p1f32(float addrspace(1)* %_arg_14, float %24, float %25, float %26, float %27, float %28, float %29, float %30, float %31, i32 16) #{{.*}}
joint_matrix_store(sg, sub_c, accD.get_pointer(), stride);
});

cgh.parallel_for<class col_col_m8n32k16>(
nd_range<2>({1, 32}, {1, 32}),
[=](nd_item<2> item) [[sycl::reqd_work_group_size(1, 1, 32)]] {
sycl::sub_group sg = item.get_sub_group();

joint_matrix<float, matrix_use::accumulator, 8, 32,
matrix_layout::col_major>
sub_c;

joint_matrix<uint16_t, matrix_use::a, 8, 16, matrix_layout::col_major>
sub_a;

joint_matrix<uint16_t, matrix_use::b, 16, 32,
matrix_layout::col_major>
sub_b;

// CHECK: tail call { float, float, float, float, float, float, float, float } @llvm.nvvm.wmma.m8n32k16.load.c.col.stride.f32.p1f32(float addrspace(1)* %_arg_, i32 16) #{{.*}}
joint_matrix_load(sg, sub_c, accC.get_pointer(), stride);
// CHECK: tail call { i32, i32 } @llvm.nvvm.wmma.m8n32k16.load.a.col.stride.bf16.p0i32(i32* %call.ascast.i.i50.i, i32 16) #{{.*}}
joint_matrix_load(sg, sub_a, accA.get_pointer(), stride);
// CHECK: tail call { i32, i32, i32, i32, i32, i32, i32, i32 } @llvm.nvvm.wmma.m8n32k16.load.b.col.stride.bf16.p0i32(i32* %call.ascast.i.i.i, i32 16) #{{.*}}
joint_matrix_load(sg, sub_b, accB.get_pointer(), stride);
// CHECK: tail call { float, float, float, float, float, float, float, float } @llvm.nvvm.wmma.m8n32k16.mma.col.col.bf16(i32 %11, i32 %12, i32 %15, i32 %16, i32 %17, i32 %18, i32 %19, i32 %20, i32 %21, i32 %22, float %1, float %2, float %3, float %4, float %5, float %6, float %7, float %8) #{{.*}}
sub_c = joint_matrix_mad(sg, sub_a, sub_b, sub_c);
// CHECK: tail call void @llvm.nvvm.wmma.m8n32k16.store.d.col.stride.f32.p1f32(float addrspace(1)* %_arg_14, float %24, float %25, float %26, float %27, float %28, float %29, float %30, float %31, i32 16) #{{.*}}
joint_matrix_store(sg, sub_c, accD.get_pointer(), stride);
});
});

return 0;
};
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
// REQUIRES: gpu, cuda
// REQUIRES: cuda

// RUN: %clangxx -fsycl-device-only -fsycl-targets=nvptx64-nvidia-cuda -Xsycl-target-backend --cuda-gpu-arch=sm_80 -DSYCL_EXT_ONEAPI_MATRIX=3 -S -Xclang -emit-llvm %s -o -| FileCheck %s

Expand Down Expand Up @@ -36,8 +36,8 @@ int main() {
auto accD = bufD.get_access<access::mode::read_write>(cgh);

cgh.parallel_for<class row_row>(
nd_range<2>({1, 32}, {1, 32}), [=
](nd_item<2> item) [[sycl::reqd_work_group_size(1, 1, 32)]] {
nd_range<2>({1, 32}, {1, 32}),
[=](nd_item<2> item) [[sycl::reqd_work_group_size(1, 1, 32)]] {
sycl::sub_group sg = item.get_sub_group();

joint_matrix<double, matrix_use::accumulator, M, N,
Expand Down Expand Up @@ -70,8 +70,8 @@ int main() {
auto accD = bufD.get_access<access::mode::read_write>(cgh);

cgh.parallel_for<class col_col>(
nd_range<2>({1, 32}, {1, 32}), [=
](nd_item<2> item) [[sycl::reqd_work_group_size(1, 1, 32)]] {
nd_range<2>({1, 32}, {1, 32}),
[=](nd_item<2> item) [[sycl::reqd_work_group_size(1, 1, 32)]] {
sycl::sub_group sg = item.get_sub_group();

joint_matrix<double, matrix_use::accumulator, M, N,
Expand Down
Loading