|
| 1 | +#!/usr/bin/env python3 |
| 2 | +# Copyright (c) Meta Platforms, Inc. and affiliates. |
| 3 | +# |
| 4 | +# This source code is licensed under the MIT license found in the |
| 5 | +# LICENSE file in the root directory of this source tree. |
| 6 | + |
| 7 | +import torch |
| 8 | +from botorch.models.kernels.positive_index import PositiveIndexKernel |
| 9 | +from botorch.utils.testing import BotorchTestCase |
| 10 | +from gpytorch.priors import NormalPrior |
| 11 | + |
| 12 | + |
| 13 | +class TestPositiveIndexKernel(BotorchTestCase): |
| 14 | + def test_positive_index_kernel(self): |
| 15 | + # Test initialization |
| 16 | + with self.subTest("basic_initialization"): |
| 17 | + num_tasks = 4 |
| 18 | + rank = 2 |
| 19 | + kernel = PositiveIndexKernel(num_tasks=num_tasks, rank=rank) |
| 20 | + |
| 21 | + self.assertEqual(kernel.num_tasks, num_tasks) |
| 22 | + self.assertEqual(kernel.raw_covar_factor.shape, (num_tasks, rank)) |
| 23 | + self.assertEqual(kernel.normalize_covar_matrix, False) |
| 24 | + |
| 25 | + # Test initialization with batch shape |
| 26 | + with self.subTest("initialization_with_batch_shape"): |
| 27 | + num_tasks = 3 |
| 28 | + rank = 2 |
| 29 | + batch_shape = torch.Size([2]) |
| 30 | + kernel = PositiveIndexKernel( |
| 31 | + num_tasks=num_tasks, rank=rank, batch_shape=batch_shape |
| 32 | + ) |
| 33 | + |
| 34 | + self.assertEqual(kernel.raw_covar_factor.shape, (2, num_tasks, rank)) |
| 35 | + |
| 36 | + # Test rank validation |
| 37 | + with self.subTest("rank_validation"): |
| 38 | + num_tasks = 3 |
| 39 | + rank = 5 |
| 40 | + with self.assertRaises(RuntimeError): |
| 41 | + PositiveIndexKernel(num_tasks=num_tasks, rank=rank) |
| 42 | + |
| 43 | + # Test target_task_index validation |
| 44 | + with self.subTest("target_task_index_validation"): |
| 45 | + num_tasks = 4 |
| 46 | + # Test invalid negative index |
| 47 | + with self.assertRaises(ValueError): |
| 48 | + PositiveIndexKernel(num_tasks=num_tasks, rank=2, target_task_index=-1) |
| 49 | + # Test invalid index >= num_tasks |
| 50 | + with self.assertRaises(ValueError): |
| 51 | + PositiveIndexKernel(num_tasks=num_tasks, rank=2, target_task_index=4) |
| 52 | + # Test valid indices (should not raise) |
| 53 | + PositiveIndexKernel(num_tasks=num_tasks, rank=2, target_task_index=0) |
| 54 | + PositiveIndexKernel(num_tasks=num_tasks, rank=2, target_task_index=3) |
| 55 | + |
| 56 | + # Test covar_factor constraint |
| 57 | + with self.subTest("positive_correlations"): |
| 58 | + kernel = PositiveIndexKernel(num_tasks=5, rank=3) |
| 59 | + covar_factor = kernel.covar_factor |
| 60 | + |
| 61 | + # All elements should be positive |
| 62 | + self.assertTrue((covar_factor > 0).all()) |
| 63 | + |
| 64 | + self.assertTrue((kernel.covar_matrix >= 0).all()) |
| 65 | + |
| 66 | + # Test covariance matrix normalization (default target_task_index=0) |
| 67 | + with self.subTest("covar_matrix_normalization_default"): |
| 68 | + kernel = PositiveIndexKernel(num_tasks=4, rank=2) |
| 69 | + covar = kernel.covar_matrix |
| 70 | + |
| 71 | + # First diagonal element should be 1.0 (normalized by default) |
| 72 | + self.assertAllClose(covar[0, 0], torch.tensor(1.0), atol=1e-4) |
| 73 | + |
| 74 | + # Test covariance matrix normalization with custom target_task_index |
| 75 | + with self.subTest("covar_matrix_normalization_custom_target"): |
| 76 | + kernel = PositiveIndexKernel(num_tasks=4, rank=2, target_task_index=2) |
| 77 | + covar = kernel.covar_matrix |
| 78 | + |
| 79 | + # Third diagonal element should be 1.0 (target_task_index=2) |
| 80 | + self.assertAllClose(covar[2, 2], torch.tensor(1.0), atol=1e-4) |
| 81 | + |
| 82 | + # Other diagonal elements should not be 1.0 |
| 83 | + self.assertNotEqual(covar[0, 0].item(), 1.0) |
| 84 | + |
| 85 | + # Test forward pass shape |
| 86 | + with self.subTest("forward"): |
| 87 | + num_tasks = 4 |
| 88 | + kernel = PositiveIndexKernel(num_tasks=num_tasks, rank=2) |
| 89 | + kernel.eval() |
| 90 | + |
| 91 | + i1 = torch.tensor([[0, 1], [2, 3]], dtype=torch.long) |
| 92 | + i2 = torch.tensor([[1, 2]], dtype=torch.long) |
| 93 | + |
| 94 | + result = kernel(i1, i2) |
| 95 | + self.assertEqual(result.shape, torch.Size([2, 1])) |
| 96 | + num_tasks = 3 |
| 97 | + kernel = PositiveIndexKernel(num_tasks=num_tasks, rank=1) |
| 98 | + kernel.eval() |
| 99 | + |
| 100 | + kernel.initialize(raw_covar_factor=torch.ones(num_tasks, 1)) |
| 101 | + i1 = torch.tensor([[0]], dtype=torch.long) |
| 102 | + i2 = torch.tensor([[1]], dtype=torch.long) |
| 103 | + |
| 104 | + result = kernel(i1, i2).to_dense() |
| 105 | + covar_matrix = kernel.covar_matrix |
| 106 | + expected = covar_matrix[0, 1] |
| 107 | + |
| 108 | + self.assertAllClose(result.squeeze(), expected) |
| 109 | + |
| 110 | + # Test with priors |
| 111 | + with self.subTest("with_priors"): |
| 112 | + num_tasks = 4 |
| 113 | + task_prior = NormalPrior(0, 1) |
| 114 | + diag_prior = NormalPrior(1, 0.1) |
| 115 | + |
| 116 | + kernel = PositiveIndexKernel( |
| 117 | + num_tasks=num_tasks, |
| 118 | + rank=2, |
| 119 | + task_prior=task_prior, |
| 120 | + diag_prior=diag_prior, |
| 121 | + initialize_to_mode=False, |
| 122 | + ) |
| 123 | + prior_names = [p[0] for p in kernel.named_priors()] |
| 124 | + self.assertIn("IndexKernelPrior", prior_names) |
| 125 | + self.assertIn("ScalePrior", prior_names) |
| 126 | + |
| 127 | + # Test batch forward |
| 128 | + with self.subTest("batch_forward"): |
| 129 | + num_tasks = 3 |
| 130 | + batch_shape = torch.Size([2]) |
| 131 | + kernel = PositiveIndexKernel( |
| 132 | + num_tasks=num_tasks, rank=2, batch_shape=batch_shape |
| 133 | + ) |
| 134 | + kernel.eval() |
| 135 | + |
| 136 | + i1 = torch.tensor([[[0], [1]]], dtype=torch.long) |
| 137 | + i2 = torch.tensor([[[1], [2]]], dtype=torch.long) |
| 138 | + |
| 139 | + result = kernel(i1, i2) |
| 140 | + |
| 141 | + # Check that batch dimensions are preserved |
| 142 | + self.assertEqual(result.shape[0], 2) |
| 143 | + |
| 144 | + # Test diagonal property (default target_task_index=0) |
| 145 | + with self.subTest("diagonal"): |
| 146 | + kernel = PositiveIndexKernel(num_tasks=4, rank=2) |
| 147 | + diag = kernel._diagonal |
| 148 | + |
| 149 | + self.assertEqual(diag.shape, torch.Size([4])) |
| 150 | + # First diagonal element should be 1.0 (default target_task_index=0) |
| 151 | + self.assertAllClose(diag[0], torch.tensor(1.0), atol=1e-4) |
| 152 | + |
| 153 | + # Test diagonal property with custom target_task_index |
| 154 | + kernel = PositiveIndexKernel(num_tasks=4, rank=2, target_task_index=1) |
| 155 | + diag = kernel._diagonal |
| 156 | + |
| 157 | + self.assertEqual(diag.shape, torch.Size([4])) |
| 158 | + # Second diagonal element should be 1.0 (target_task_index=1) |
| 159 | + self.assertAllClose(diag[1], torch.tensor(1.0), atol=1e-4) |
| 160 | + |
| 161 | + # Test lower triangle property |
| 162 | + with self.subTest("lower_triangle"): |
| 163 | + num_tasks = 5 |
| 164 | + kernel = PositiveIndexKernel(num_tasks=num_tasks, rank=2) |
| 165 | + lower_tri = kernel._lower_triangle |
| 166 | + |
| 167 | + # Number of lower triangular elements (excluding diagonal) |
| 168 | + expected_size = num_tasks * (num_tasks - 1) // 2 |
| 169 | + self.assertEqual(lower_tri.shape[-1], expected_size) |
| 170 | + self.assertTrue((lower_tri >= 0).all()) |
| 171 | + |
| 172 | + # Test invalid prior type |
| 173 | + with self.subTest("invalid_prior_type"): |
| 174 | + with self.assertRaises(TypeError): |
| 175 | + PositiveIndexKernel(num_tasks=4, rank=2, task_prior="not_a_prior") |
| 176 | + |
| 177 | + # Test covariance matrix properties |
| 178 | + with self.subTest("covar_matrix"): |
| 179 | + kernel = PositiveIndexKernel(num_tasks=5, rank=4) |
| 180 | + covar = kernel.covar_matrix |
| 181 | + |
| 182 | + # Should be square |
| 183 | + self.assertEqual(covar.shape[-2], covar.shape[-1]) |
| 184 | + |
| 185 | + # Should be positive definite (all eigenvalues > 0) |
| 186 | + eigvals = torch.linalg.eigvalsh(covar) |
| 187 | + self.assertTrue((eigvals > 0).all()) |
| 188 | + |
| 189 | + # Should be symmetric |
| 190 | + self.assertAllClose(covar, covar.T, atol=1e-5) |
| 191 | + |
| 192 | + # Test covar_factor setter and getter |
| 193 | + with self.subTest("covar_factor"): |
| 194 | + kernel = PositiveIndexKernel(num_tasks=3, rank=2) |
| 195 | + new_covar_factor = torch.ones(3, 2) * 2.0 |
| 196 | + kernel.covar_factor = new_covar_factor |
| 197 | + self.assertAllClose(kernel.covar_factor, new_covar_factor, atol=1e-5) |
| 198 | + |
| 199 | + kernel = PositiveIndexKernel(num_tasks=3, rank=2) |
| 200 | + params = kernel._covar_factor_params(kernel) |
| 201 | + self.assertEqual(params.shape, torch.Size([3, 2])) |
| 202 | + self.assertTrue((params > 0).all()) |
| 203 | + |
| 204 | + kernel = PositiveIndexKernel(num_tasks=3, rank=2) |
| 205 | + new_value = torch.ones(3, 2) * 3.0 |
| 206 | + kernel._covar_factor_closure(kernel, new_value) |
| 207 | + self.assertAllClose(kernel.covar_factor, new_value, atol=1e-5) |
0 commit comments