@@ -458,13 +458,14 @@ def _create_effnet(variant, pretrained=False, **kwargs):
458458 kwargs_filter = ('num_classes' , 'num_features' , 'head_conv' , 'global_pool' )
459459 model_cls = EfficientNetFeatures
460460 features_mode = 'cls'
461+ pretrained_strict = kwargs .pop ('pretrained_strict' , True )
461462
462463 model = build_model_with_cfg (
463464 model_cls ,
464465 variant ,
465466 pretrained ,
466467 features_only = features_mode == 'cfg' ,
467- pretrained_strict = features_mode != 'cls' ,
468+ pretrained_strict = pretrained_strict and features_mode != 'cls' ,
468469 kwargs_filter = kwargs_filter ,
469470 ** kwargs ,
470471 )
@@ -1446,12 +1447,16 @@ def _cfg(url='', **kwargs):
14461447 'efficientnet_b3_g8_gn.untrained' : _cfg (
14471448 input_size = (3 , 288 , 288 ), pool_size = (9 , 9 ), test_input_size = (3 , 320 , 320 ), crop_pct = 1.0 ),
14481449 'efficientnet_blur_b0.untrained' : _cfg (),
1449- 'efficientnet_h_b5.untrained' : _cfg (
1450- url = '' , input_size = (3 , 448 , 448 ), pool_size = (14 , 14 ), crop_pct = 1.0 ),
1450+ 'efficientnet_h_b5.sw_r448_e450_in1k' : _cfg (
1451+ hf_hub_id = 'timm/' ,
1452+ input_size = (3 , 448 , 448 ), pool_size = (14 , 14 ), crop_pct = 1.0 ,
1453+ crop_mode = 'squash' , test_input_size = (3 , 576 , 576 )),
14511454 'efficientnet_x_b3.untrained' : _cfg (
14521455 url = '' , input_size = (3 , 288 , 288 ), pool_size = (9 , 9 ), crop_pct = 0.95 ),
1453- 'efficientnet_x_b5.untrained' : _cfg (
1454- url = '' , input_size = (3 , 448 , 448 ), pool_size = (14 , 14 ), crop_pct = 1.0 ),
1456+ 'efficientnet_x_b5.sw_r448_e450_in1k' : _cfg (
1457+ hf_hub_id = 'timm/' ,
1458+ input_size = (3 , 448 , 448 ), pool_size = (14 , 14 ), crop_pct = 1.0 ,
1459+ crop_mode = 'squash' , test_input_size = (3 , 576 , 576 )),
14551460
14561461 'efficientnet_es.ra_in1k' : _cfg (
14571462 url = 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_es_ra-f111e99c.pth' ,
0 commit comments