-
Notifications
You must be signed in to change notification settings - Fork 6.1k
add PAG support for SD Img2Img #9463
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Changes from all commits
Commits
Show all changes
24 commits
Select commit
Hold shift + click to select a range
c072fd7
added pag to sd img2img pipeline
SahilCarterr c622bd6
Update pipeline_pag_sd_img2img.py
SahilCarterr 555215d
auto pipeline added
SahilCarterr b6150da
docs update
SahilCarterr ce8b22d
add test
SahilCarterr 16b5474
Merge branch 'main' into main
SahilCarterr 00dfea6
fix #copied from and tests
SahilCarterr bd002ac
fix typo
SahilCarterr ec0f21a
remove test
SahilCarterr 0e683a2
Merge branch 'main' into main
SahilCarterr bc12960
Update src/diffusers/pipelines/pag/pipeline_pag_sd_img2img.py
yiyixuxu f4f6153
style + copy
yiyixuxu d030f39
fix test
SahilCarterr 8a806f2
Merge branch 'main' into main
SahilCarterr ec32e90
fix inference test
SahilCarterr c8d0a49
fix ip_adapter error
SahilCarterr ac20697
Merge branch 'main' into main
SahilCarterr 2e8295b
fix test errors
SahilCarterr 56517cc
fixed arrestion
SahilCarterr 93b561f
fix tests
SahilCarterr 33c9673
Merge branch 'main' into main
SahilCarterr abcb2ab
fix make error
SahilCarterr 0014af6
Merge branch 'main' into main
SahilCarterr ff62273
Merge branch 'main' into main
SahilCarterr File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
1,091 changes: 1,091 additions & 0 deletions
1,091
src/diffusers/pipelines/pag/pipeline_pag_sd_img2img.py
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,282 @@ | ||
# coding=utf-8 | ||
# Copyright 2024 HuggingFace Inc. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import gc | ||
import inspect | ||
import random | ||
import unittest | ||
|
||
import numpy as np | ||
import torch | ||
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer | ||
|
||
from diffusers import ( | ||
AutoencoderKL, | ||
AutoencoderTiny, | ||
AutoPipelineForImage2Image, | ||
EulerDiscreteScheduler, | ||
StableDiffusionImg2ImgPipeline, | ||
StableDiffusionPAGImg2ImgPipeline, | ||
UNet2DConditionModel, | ||
) | ||
from diffusers.utils.testing_utils import ( | ||
enable_full_determinism, | ||
floats_tensor, | ||
load_image, | ||
require_torch_gpu, | ||
slow, | ||
torch_device, | ||
) | ||
|
||
from ..pipeline_params import ( | ||
IMAGE_TO_IMAGE_IMAGE_PARAMS, | ||
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, | ||
TEXT_GUIDED_IMAGE_VARIATION_PARAMS, | ||
TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS, | ||
) | ||
from ..test_pipelines_common import ( | ||
IPAdapterTesterMixin, | ||
PipelineKarrasSchedulerTesterMixin, | ||
PipelineLatentTesterMixin, | ||
PipelineTesterMixin, | ||
) | ||
|
||
|
||
enable_full_determinism() | ||
|
||
|
||
class StableDiffusionPAGImg2ImgPipelineFastTests( | ||
IPAdapterTesterMixin, | ||
PipelineLatentTesterMixin, | ||
PipelineKarrasSchedulerTesterMixin, | ||
PipelineTesterMixin, | ||
unittest.TestCase, | ||
): | ||
pipeline_class = StableDiffusionPAGImg2ImgPipeline | ||
params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({"pag_scale", "pag_adaptive_scale"}) - {"height", "width"} | ||
required_optional_params = PipelineTesterMixin.required_optional_params - {"latents"} | ||
batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS | ||
image_params = IMAGE_TO_IMAGE_IMAGE_PARAMS | ||
image_latents_params = IMAGE_TO_IMAGE_IMAGE_PARAMS | ||
callback_cfg_params = TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS | ||
|
||
def get_dummy_components(self, time_cond_proj_dim=None): | ||
torch.manual_seed(0) | ||
unet = UNet2DConditionModel( | ||
block_out_channels=(32, 64), | ||
layers_per_block=2, | ||
time_cond_proj_dim=time_cond_proj_dim, | ||
sample_size=32, | ||
in_channels=4, | ||
out_channels=4, | ||
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), | ||
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), | ||
cross_attention_dim=32, | ||
) | ||
scheduler = EulerDiscreteScheduler( | ||
beta_start=0.00085, | ||
beta_end=0.012, | ||
steps_offset=1, | ||
beta_schedule="scaled_linear", | ||
timestep_spacing="leading", | ||
) | ||
torch.manual_seed(0) | ||
vae = AutoencoderKL( | ||
block_out_channels=[32, 64], | ||
in_channels=3, | ||
out_channels=3, | ||
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], | ||
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], | ||
latent_channels=4, | ||
sample_size=128, | ||
) | ||
text_encoder_config = CLIPTextConfig( | ||
bos_token_id=0, | ||
eos_token_id=2, | ||
hidden_size=32, | ||
intermediate_size=37, | ||
layer_norm_eps=1e-05, | ||
num_attention_heads=4, | ||
num_hidden_layers=5, | ||
pad_token_id=1, | ||
vocab_size=1000, | ||
) | ||
text_encoder = CLIPTextModel(text_encoder_config) | ||
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | ||
|
||
components = { | ||
"unet": unet, | ||
"scheduler": scheduler, | ||
"vae": vae, | ||
"text_encoder": text_encoder, | ||
"tokenizer": tokenizer, | ||
"safety_checker": None, | ||
"feature_extractor": None, | ||
"image_encoder": None, | ||
} | ||
return components | ||
|
||
def get_dummy_tiny_autoencoder(self): | ||
return AutoencoderTiny(in_channels=3, out_channels=3, latent_channels=4) | ||
|
||
def get_dummy_inputs(self, device, seed=0): | ||
image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device) | ||
image = image / 2 + 0.5 | ||
if str(device).startswith("mps"): | ||
generator = torch.manual_seed(seed) | ||
else: | ||
generator = torch.Generator(device=device).manual_seed(seed) | ||
inputs = { | ||
"prompt": "A painting of a squirrel eating a burger", | ||
"image": image, | ||
"generator": generator, | ||
"num_inference_steps": 2, | ||
"guidance_scale": 6.0, | ||
"pag_scale": 0.9, | ||
"output_type": "np", | ||
} | ||
return inputs | ||
|
||
def test_pag_disable_enable(self): | ||
device = "cpu" # ensure determinism for the device-dependent torch.Generator | ||
components = self.get_dummy_components() | ||
|
||
# base pipeline (expect same output when pag is disabled) | ||
pipe_sd = StableDiffusionImg2ImgPipeline(**components) | ||
pipe_sd = pipe_sd.to(device) | ||
pipe_sd.set_progress_bar_config(disable=None) | ||
|
||
inputs = self.get_dummy_inputs(device) | ||
del inputs["pag_scale"] | ||
assert ( | ||
"pag_scale" not in inspect.signature(pipe_sd.__call__).parameters | ||
), f"`pag_scale` should not be a call parameter of the base pipeline {pipe_sd.__class__.__name__}." | ||
out = pipe_sd(**inputs).images[0, -3:, -3:, -1] | ||
|
||
# pag disabled with pag_scale=0.0 | ||
pipe_pag = self.pipeline_class(**components) | ||
pipe_pag = pipe_pag.to(device) | ||
pipe_pag.set_progress_bar_config(disable=None) | ||
|
||
inputs = self.get_dummy_inputs(device) | ||
inputs["pag_scale"] = 0.0 | ||
out_pag_disabled = pipe_pag(**inputs).images[0, -3:, -3:, -1] | ||
|
||
# pag enabled | ||
pipe_pag = self.pipeline_class(**components, pag_applied_layers=["mid", "up", "down"]) | ||
pipe_pag = pipe_pag.to(device) | ||
pipe_pag.set_progress_bar_config(disable=None) | ||
|
||
inputs = self.get_dummy_inputs(device) | ||
out_pag_enabled = pipe_pag(**inputs).images[0, -3:, -3:, -1] | ||
|
||
assert np.abs(out.flatten() - out_pag_disabled.flatten()).max() < 1e-3 | ||
assert np.abs(out.flatten() - out_pag_enabled.flatten()).max() > 1e-3 | ||
|
||
def test_pag_inference(self): | ||
device = "cpu" # ensure determinism for the device-dependent torch.Generator | ||
components = self.get_dummy_components() | ||
|
||
pipe_pag = self.pipeline_class(**components, pag_applied_layers=["mid", "up", "down"]) | ||
pipe_pag = pipe_pag.to(device) | ||
pipe_pag.set_progress_bar_config(disable=None) | ||
|
||
inputs = self.get_dummy_inputs(device) | ||
image = pipe_pag(**inputs).images | ||
image_slice = image[0, -3:, -3:, -1] | ||
|
||
assert image.shape == ( | ||
1, | ||
32, | ||
32, | ||
3, | ||
), f"the shape of the output image should be (1, 32, 32, 3) but got {image.shape}" | ||
|
||
expected_slice = np.array( | ||
[0.44203848, 0.49598145, 0.42248967, 0.6707724, 0.5683791, 0.43603387, 0.58316565, 0.60077155, 0.5174199] | ||
) | ||
max_diff = np.abs(image_slice.flatten() - expected_slice).max() | ||
self.assertLessEqual(max_diff, 1e-3) | ||
|
||
|
||
@slow | ||
@require_torch_gpu | ||
class StableDiffusionPAGImg2ImgPipelineIntegrationTests(unittest.TestCase): | ||
pipeline_class = StableDiffusionPAGImg2ImgPipeline | ||
repo_id = "Jiali/stable-diffusion-1.5" | ||
|
||
def setUp(self): | ||
super().setUp() | ||
gc.collect() | ||
torch.cuda.empty_cache() | ||
|
||
def tearDown(self): | ||
super().tearDown() | ||
gc.collect() | ||
torch.cuda.empty_cache() | ||
|
||
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0): | ||
generator = torch.Generator(device=generator_device).manual_seed(seed) | ||
init_image = load_image( | ||
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" | ||
"/stable_diffusion_img2img/sketch-mountains-input.png" | ||
) | ||
inputs = { | ||
"prompt": "a fantasy landscape, concept art, high resolution", | ||
"image": init_image, | ||
"generator": generator, | ||
"num_inference_steps": 3, | ||
"strength": 0.75, | ||
"guidance_scale": 7.5, | ||
"pag_scale": 3.0, | ||
"output_type": "np", | ||
} | ||
return inputs | ||
|
||
def test_pag_cfg(self): | ||
pipeline = AutoPipelineForImage2Image.from_pretrained(self.repo_id, enable_pag=True, torch_dtype=torch.float16) | ||
pipeline.enable_model_cpu_offload() | ||
pipeline.set_progress_bar_config(disable=None) | ||
|
||
inputs = self.get_inputs(torch_device) | ||
image = pipeline(**inputs).images | ||
|
||
image_slice = image[0, -3:, -3:, -1].flatten() | ||
assert image.shape == (1, 512, 512, 3) | ||
print(image_slice.flatten()) | ||
expected_slice = np.array( | ||
[0.58251953, 0.5722656, 0.5683594, 0.55029297, 0.52001953, 0.52001953, 0.49951172, 0.45410156, 0.50146484] | ||
) | ||
assert ( | ||
np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 | ||
), f"output is different from expected, {image_slice.flatten()}" | ||
|
||
def test_pag_uncond(self): | ||
pipeline = AutoPipelineForImage2Image.from_pretrained(self.repo_id, enable_pag=True, torch_dtype=torch.float16) | ||
pipeline.enable_model_cpu_offload() | ||
pipeline.set_progress_bar_config(disable=None) | ||
|
||
inputs = self.get_inputs(torch_device, guidance_scale=0.0) | ||
image = pipeline(**inputs).images | ||
|
||
image_slice = image[0, -3:, -3:, -1].flatten() | ||
assert image.shape == (1, 512, 512, 3) | ||
expected_slice = np.array( | ||
[0.5986328, 0.52441406, 0.3972168, 0.4741211, 0.34985352, 0.22705078, 0.4128418, 0.2866211, 0.31713867] | ||
) | ||
print(image_slice.flatten()) | ||
assert ( | ||
np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 | ||
), f"output is different from expected, {image_slice.flatten()}" |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
this test is not needed? (same as the one above it?)
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
should i remove
StableDiffusionPAGImg2ImgPipelineIntegrationTests(unittest.TestCase):
also ?