-
Notifications
You must be signed in to change notification settings - Fork 6k
[research_projects] add shortened flux training script with quantization #11743
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Open
DerekLiu35
wants to merge
8
commits into
huggingface:main
Choose a base branch
from
DerekLiu35:add-flux-lora-quantization-nano-example
base: main
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Open
Changes from all commits
Commits
Show all changes
8 commits
Select commit
Hold shift + click to select a range
89a3af6
add example
DerekLiu35 f5a0a4d
Apply style fixes
github-actions[bot] 4355b20
Merge branch 'main' into add-flux-lora-quantization-nano-example
sayakpaul 5648aaa
Apply suggestions from code review
DerekLiu35 ae6bd61
apply suggestions from code review
DerekLiu35 ba5144b
remove unused arg
DerekLiu35 4a5f73a
init tracker while creating the output folder
DerekLiu35 dc7932e
fix style
DerekLiu35 File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
396 changes: 396 additions & 0 deletions
396
examples/research_projects/flux_lora_quantization/train_dreambooth_lora_flux_nano.py
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,396 @@ | ||
#!/usr/bin/env python | ||
# coding=utf-8 | ||
# Copyright 2025 The HuggingFace Inc. team. All rights reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
|
||
import copy | ||
import logging | ||
import math | ||
import os | ||
from pathlib import Path | ||
|
||
import numpy as np | ||
import pandas as pd | ||
import torch | ||
import transformers | ||
from accelerate import Accelerator | ||
from accelerate.logging import get_logger | ||
from accelerate.utils import DistributedDataParallelKwargs, ProjectConfiguration, set_seed | ||
from datasets import load_dataset | ||
from huggingface_hub.utils import insecure_hashlib | ||
from peft import LoraConfig, prepare_model_for_kbit_training | ||
from peft.utils import get_peft_model_state_dict | ||
from PIL.ImageOps import exif_transpose | ||
from torch.utils.data import Dataset | ||
from torchvision import transforms | ||
from tqdm.auto import tqdm | ||
|
||
import diffusers | ||
from diffusers import ( | ||
AutoencoderKL, | ||
BitsAndBytesConfig, | ||
FlowMatchEulerDiscreteScheduler, | ||
FluxPipeline, | ||
FluxTransformer2DModel, | ||
) | ||
from diffusers.optimization import get_scheduler | ||
from diffusers.training_utils import ( | ||
cast_training_params, | ||
compute_density_for_timestep_sampling, | ||
compute_loss_weighting_for_sd3, | ||
free_memory, | ||
) | ||
from diffusers.utils.torch_utils import is_compiled_module | ||
|
||
|
||
logger = get_logger(__name__) | ||
|
||
|
||
class DreamBoothDataset(Dataset): | ||
def __init__(self, data_df_path, dataset_name, width, height, max_sequence_length=77): | ||
self.width, self.height, self.max_sequence_length = width, height, max_sequence_length | ||
self.data_df_path = Path(data_df_path) | ||
if not self.data_df_path.exists(): | ||
raise ValueError("`data_df_path` doesn't exists.") | ||
|
||
dataset = load_dataset(dataset_name, split="train") | ||
self.instance_images = [sample["image"] for sample in dataset] | ||
self.image_hashes = [insecure_hashlib.sha256(img.tobytes()).hexdigest() for img in self.instance_images] | ||
self.pixel_values = self._apply_transforms() | ||
self.data_dict = self._map_embeddings() | ||
self._length = len(self.instance_images) | ||
|
||
def __len__(self): | ||
return self._length | ||
|
||
def __getitem__(self, index): | ||
idx = index % len(self.instance_images) | ||
hash_key = self.image_hashes[idx] | ||
prompt_embeds, pooled_prompt_embeds, text_ids = self.data_dict[hash_key] | ||
return { | ||
"instance_images": self.pixel_values[idx], | ||
"prompt_embeds": prompt_embeds, | ||
"pooled_prompt_embeds": pooled_prompt_embeds, | ||
"text_ids": text_ids, | ||
} | ||
|
||
def _apply_transforms(self): | ||
transform = transforms.Compose( | ||
[ | ||
transforms.Resize((self.height, self.width), interpolation=transforms.InterpolationMode.BILINEAR), | ||
transforms.RandomCrop((self.height, self.width)), | ||
transforms.ToTensor(), | ||
transforms.Normalize([0.5], [0.5]), | ||
] | ||
) | ||
|
||
pixel_values = [] | ||
for image in self.instance_images: | ||
image = exif_transpose(image).convert("RGB") if image.mode != "RGB" else exif_transpose(image) | ||
pixel_values.append(transform(image)) | ||
return pixel_values | ||
|
||
def _map_embeddings(self): | ||
df = pd.read_parquet(self.data_df_path) | ||
data_dict = {} | ||
for _, row in df.iterrows(): | ||
prompt_embeds = torch.from_numpy(np.array(row["prompt_embeds"]).reshape(self.max_sequence_length, 4096)) | ||
pooled_prompt_embeds = torch.from_numpy(np.array(row["pooled_prompt_embeds"]).reshape(768)) | ||
text_ids = torch.from_numpy(np.array(row["text_ids"]).reshape(77, 3)) | ||
data_dict[row["image_hash"]] = (prompt_embeds, pooled_prompt_embeds, text_ids) | ||
return data_dict | ||
|
||
|
||
def collate_fn(examples): | ||
pixel_values = torch.stack([ex["instance_images"] for ex in examples]).float() | ||
pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float() | ||
prompt_embeds = torch.stack([ex["prompt_embeds"] for ex in examples]) | ||
pooled_prompt_embeds = torch.stack([ex["pooled_prompt_embeds"] for ex in examples]) | ||
text_ids = torch.stack([ex["text_ids"] for ex in examples])[0] | ||
|
||
return { | ||
"pixel_values": pixel_values, | ||
"prompt_embeds": prompt_embeds, | ||
"pooled_prompt_embeds": pooled_prompt_embeds, | ||
"text_ids": text_ids, | ||
} | ||
|
||
|
||
def main(args): | ||
# Setup accelerator | ||
accelerator = Accelerator( | ||
gradient_accumulation_steps=args.gradient_accumulation_steps, | ||
mixed_precision=args.mixed_precision, | ||
log_with=args.report_to, | ||
project_config=ProjectConfiguration(project_dir=args.output_dir, logging_dir=Path(args.output_dir, "logs")), | ||
kwargs_handlers=[DistributedDataParallelKwargs(find_unused_parameters=True)], | ||
) | ||
|
||
# Setup logging | ||
logging.basicConfig(format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", level=logging.INFO) | ||
if accelerator.is_local_main_process: | ||
transformers.utils.logging.set_verbosity_warning() | ||
diffusers.utils.logging.set_verbosity_info() | ||
else: | ||
transformers.utils.logging.set_verbosity_error() | ||
diffusers.utils.logging.set_verbosity_error() | ||
|
||
set_seed(args.seed) if args.seed is not None else None | ||
|
||
if accelerator.is_main_proces: | ||
if args.output_dir is not None: | ||
os.makedirs(args.output_dir, exist_ok=True) | ||
accelerator.init_trackers("dreambooth-flux-dev-lora-alphonse-mucha", config=vars(args)) | ||
|
||
# Load models with quantization | ||
noise_scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained( | ||
args.pretrained_model_name_or_path, subfolder="scheduler" | ||
) | ||
noise_scheduler_copy = copy.deepcopy(noise_scheduler) | ||
|
||
vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae") | ||
|
||
nf4_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.float16) | ||
transformer = FluxTransformer2DModel.from_pretrained( | ||
args.pretrained_model_name_or_path, | ||
subfolder="transformer", | ||
quantization_config=nf4_config, | ||
torch_dtype=torch.float16, | ||
) | ||
transformer = prepare_model_for_kbit_training(transformer, use_gradient_checkpointing=False) | ||
|
||
# Freeze models and setup LoRA | ||
transformer.requires_grad_(False) | ||
vae.requires_grad_(False) | ||
vae.to(accelerator.device, dtype=torch.float16) | ||
if args.gradient_checkpointing: | ||
transformer.enable_gradient_checkpointing() | ||
|
||
# now we will add new LoRA weights to the attention layers | ||
transformer_lora_config = LoraConfig( | ||
r=args.rank, | ||
lora_alpha=args.rank, | ||
init_lora_weights="gaussian", | ||
target_modules=["to_k", "to_q", "to_v", "to_out.0"], | ||
) | ||
transformer.add_adapter(transformer_lora_config) | ||
|
||
print( | ||
f"trainable params: {transformer.num_parameters(only_trainable=True)} || all params: {transformer.num_parameters()}" | ||
) | ||
|
||
# Make sure the trainable params are in float32. | ||
if args.mixed_precision == "fp16": | ||
models = [transformer] | ||
# only upcast trainable parameters (LoRA) into fp32 | ||
cast_training_params(models, dtype=torch.float32) | ||
|
||
# Setup optimizer | ||
import bitsandbytes as bnb | ||
|
||
optimizer = bnb.optim.AdamW8bit( | ||
[{"params": list(filter(lambda p: p.requires_grad, transformer.parameters())), "lr": args.learning_rate}], | ||
betas=(0.9, 0.999), | ||
weight_decay=1e-04, | ||
eps=1e-08, | ||
) | ||
|
||
# Setup dataset and dataloader | ||
train_dataset = DreamBoothDataset(args.data_df_path, "derekl35/alphonse-mucha-style", args.width, args.height) | ||
train_dataloader = torch.utils.data.DataLoader( | ||
train_dataset, batch_size=args.train_batch_size, shuffle=True, collate_fn=collate_fn | ||
) | ||
|
||
# Cache latents | ||
vae_config = vae.config | ||
latents_cache = [] | ||
for batch in tqdm(train_dataloader, desc="Caching latents"): | ||
with torch.no_grad(): | ||
pixel_values = batch["pixel_values"].to(accelerator.device, dtype=torch.float16) | ||
latents_cache.append(vae.encode(pixel_values).latent_dist) | ||
|
||
vae.cpu() | ||
del vae | ||
free_memory() | ||
DerekLiu35 marked this conversation as resolved.
Show resolved
Hide resolved
|
||
|
||
# Setup scheduler and training steps | ||
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) | ||
args.max_train_steps = args.max_train_steps or args.num_train_epochs * num_update_steps_per_epoch | ||
|
||
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) | ||
|
||
lr_scheduler = get_scheduler( | ||
"constant", optimizer=optimizer, num_warmup_steps=0, num_training_steps=args.max_train_steps | ||
) | ||
|
||
# Prepare for training | ||
transformer, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( | ||
transformer, optimizer, train_dataloader, lr_scheduler | ||
) | ||
|
||
def unwrap_model(model): | ||
model = accelerator.unwrap_model(model) | ||
return model._orig_mod if is_compiled_module(model) else model | ||
|
||
# Initialize tracking | ||
accelerator.init_trackers( | ||
"dreambooth-flux-dev-lora-alphonse-mucha", config=vars(args) | ||
) if accelerator.is_main_process else None | ||
|
||
# Training loop | ||
def get_sigmas(timesteps, n_dim=4, dtype=torch.float32): | ||
sigmas = noise_scheduler_copy.sigmas.to(device=accelerator.device, dtype=dtype) | ||
schedule_timesteps = noise_scheduler_copy.timesteps.to(accelerator.device) | ||
step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps.to(accelerator.device)] | ||
sigma = sigmas[step_indices].flatten() | ||
while len(sigma.shape) < n_dim: | ||
sigma = sigma.unsqueeze(-1) | ||
return sigma | ||
|
||
global_step = 0 | ||
progress_bar = tqdm(range(args.max_train_steps), desc="Steps", disable=not accelerator.is_local_main_process) | ||
|
||
for epoch in range(args.num_train_epochs): | ||
for step, batch in enumerate(train_dataloader): | ||
with accelerator.accumulate([transformer]): | ||
# Get cached latents | ||
model_input = latents_cache[step].sample() | ||
model_input = (model_input - vae_config.shift_factor) * vae_config.scaling_factor | ||
model_input = model_input.to(dtype=torch.float16) | ||
|
||
# Prepare inputs | ||
latent_image_ids = FluxPipeline._prepare_latent_image_ids( | ||
model_input.shape[0], | ||
model_input.shape[2] // 2, | ||
model_input.shape[3] // 2, | ||
accelerator.device, | ||
torch.float16, | ||
) | ||
|
||
noise = torch.randn_like(model_input) | ||
bsz = model_input.shape[0] | ||
|
||
u = compute_density_for_timestep_sampling( | ||
weighting_scheme=args.weighting_scheme, | ||
batch_size=bsz, | ||
logit_mean=args.logit_mean, | ||
logit_std=args.logit_std, | ||
mode_scale=args.mode_scale, | ||
) | ||
indices = (u * noise_scheduler_copy.config.num_train_timesteps).long() | ||
timesteps = noise_scheduler_copy.timesteps[indices].to(device=model_input.device) | ||
|
||
sigmas = get_sigmas(timesteps, n_dim=model_input.ndim, dtype=model_input.dtype) | ||
noisy_model_input = (1.0 - sigmas) * model_input + sigmas * noise | ||
|
||
packed_noisy_model_input = FluxPipeline._pack_latents( | ||
noisy_model_input, | ||
model_input.shape[0], | ||
model_input.shape[1], | ||
model_input.shape[2], | ||
model_input.shape[3], | ||
) | ||
|
||
# Forward pass | ||
guidance = ( | ||
torch.tensor([args.guidance_scale], device=accelerator.device).expand(bsz) | ||
if unwrap_model(transformer).config.guidance_embeds | ||
else None | ||
) | ||
|
||
model_pred = transformer( | ||
hidden_states=packed_noisy_model_input, | ||
timestep=timesteps / 1000, | ||
guidance=guidance, | ||
pooled_projections=batch["pooled_prompt_embeds"].to(accelerator.device, dtype=torch.float16), | ||
encoder_hidden_states=batch["prompt_embeds"].to(accelerator.device, dtype=torch.float16), | ||
txt_ids=batch["text_ids"].to(accelerator.device, dtype=torch.float16), | ||
img_ids=latent_image_ids, | ||
return_dict=False, | ||
)[0] | ||
|
||
vae_scale_factor = 2 ** (len(vae_config.block_out_channels) - 1) | ||
model_pred = FluxPipeline._unpack_latents( | ||
model_pred, | ||
model_input.shape[2] * vae_scale_factor, | ||
model_input.shape[3] * vae_scale_factor, | ||
vae_scale_factor, | ||
) | ||
|
||
# Compute loss | ||
weighting = compute_loss_weighting_for_sd3(args.weighting_scheme, sigmas) | ||
target = noise - model_input | ||
loss = torch.mean( | ||
(weighting.float() * (model_pred.float() - target.float()) ** 2).reshape(target.shape[0], -1), 1 | ||
).mean() | ||
|
||
accelerator.backward(loss) | ||
|
||
if accelerator.sync_gradients: | ||
accelerator.clip_grad_norm_(transformer.parameters(), 1.0) | ||
|
||
optimizer.step() | ||
lr_scheduler.step() | ||
optimizer.zero_grad() | ||
|
||
if accelerator.sync_gradients: | ||
progress_bar.update(1) | ||
global_step += 1 | ||
|
||
# Logging | ||
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} | ||
progress_bar.set_postfix(**logs) | ||
accelerator.log(logs, step=global_step) | ||
|
||
if global_step >= args.max_train_steps: | ||
break | ||
|
||
# Final save | ||
accelerator.wait_for_everyone() | ||
if accelerator.is_main_process: | ||
transformer_lora_layers = get_peft_model_state_dict(unwrap_model(transformer)) | ||
FluxPipeline.save_lora_weights( | ||
args.output_dir, transformer_lora_layers=transformer_lora_layers, text_encoder_lora_layers=None | ||
) | ||
|
||
if torch.cuda.is_available(): | ||
print(f"Pipeline memory usage: {torch.cuda.max_memory_reserved() / 1024**3:.3f} GB") | ||
else: | ||
print("Training completed. GPU not available for memory tracking.") | ||
|
||
accelerator.end_training() | ||
|
||
|
||
if __name__ == "__main__": | ||
|
||
class Args: | ||
pretrained_model_name_or_path = "black-forest-labs/FLUX.1-dev" | ||
data_df_path = "embeddings_alphonse_mucha.parquet" # first, run compute_embeddings.py with a dataset like https://huggingface.co/datasets/derekl35/alphonse-mucha-style | ||
output_dir = "alphonse_mucha_lora_flux_nf4" | ||
mixed_precision = "fp16" | ||
weighting_scheme = "none" # "sigma_sqrt", "logit_normal", "mode", "cosmap", "none" | ||
width, height = 512, 768 | ||
train_batch_size = 1 | ||
learning_rate = 1e-4 | ||
guidance_scale = 1.0 | ||
report_to = "wandb" | ||
gradient_accumulation_steps = 4 | ||
gradient_checkpointing = True | ||
rank = 4 | ||
max_train_steps = 700 | ||
seed = 0 | ||
logit_mean = 0.0 | ||
logit_std = 1.0 | ||
mode_scale = 1.29 | ||
|
||
main(Args()) |
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Should cast the LoRA params to FP32. Do you have a full run with this script that works without FP32 upcasting?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I think I was casting to FP32 below with
cast_training_params([transformer], dtype=torch.float32) if args.mixed_precision == "fp16" else None
below (probably will move it over here and change it to match original training script better.I do have a full run with this script with reasonable results without FP32 upcasting.
But, I noticed in the loss curves are slightly different between nano script (rare-voice-24 run) and original script (fanciful-totem-2) so I will need to find where the discrepancy is coming from.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
If it doesn't affect results, probably okay