Skip to content

[tests] add test for torch.compile + group offloading #11670

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Jun 6, 2025
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
34 changes: 29 additions & 5 deletions tests/models/test_modeling_common.py
Original file line number Diff line number Diff line change
Expand Up @@ -1744,6 +1744,10 @@ def test_push_to_hub_library_name(self):
delete_repo(self.repo_id, token=TOKEN)


@require_torch_gpu
@require_torch_2
@is_torch_compile
@slow
class TorchCompileTesterMixin:
def setUp(self):
# clean up the VRAM before each test
Expand All @@ -1759,12 +1763,7 @@ def tearDown(self):
gc.collect()
backend_empty_cache(torch_device)

@require_torch_gpu
@require_torch_2
@is_torch_compile
@slow
def test_torch_compile_recompilation_and_graph_break(self):
torch.compiler.reset()
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

model = self.model_class(**init_dict).to(torch_device)
Expand All @@ -1778,6 +1777,31 @@ def test_torch_compile_recompilation_and_graph_break(self):
_ = model(**inputs_dict)
_ = model(**inputs_dict)

def test_compile_with_group_offloading(self):
torch._dynamo.config.cache_size_limit = 10000

init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**init_dict)

if not getattr(model, "_supports_group_offloading", True):
return

model.eval()
# TODO: Can test for other group offloading kwargs later if needed.
group_offload_kwargs = {
"onload_device": "cuda",
"offload_device": "cpu",
"offload_type": "block_level",
"num_blocks_per_group": 1,
"use_stream": True,
"non_blocking": True,
}
model.enable_group_offload(**group_offload_kwargs)
model.compile()
with torch.no_grad():
_ = model(**inputs_dict)
_ = model(**inputs_dict)


@slow
@require_torch_2
Expand Down
Loading