Skip to content

Commit 87e50a2

Browse files
[Tests] Improve transformers model test suite coverage - Hunyuan DiT (#8916)
* add hunyuan model test * apply suggestions * reduce dims further * reduce dims further * run make style --------- Co-authored-by: Sayak Paul <[email protected]>
1 parent a57a7af commit 87e50a2

File tree

1 file changed

+113
-0
lines changed

1 file changed

+113
-0
lines changed
Lines changed: 113 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,113 @@
1+
# coding=utf-8
2+
# Copyright 2024 HuggingFace Inc.
3+
#
4+
# Licensed under the Apache License, Version 2.0 (the "License");
5+
# you may not use this file except in compliance with the License.
6+
# You may obtain a copy of the License at
7+
#
8+
# http://www.apache.org/licenses/LICENSE-2.0
9+
#
10+
# Unless required by applicable law or agreed to in writing, software
11+
# distributed under the License is distributed on an "AS IS" BASIS,
12+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13+
# See the License for the specific language governing permissions and
14+
# limitations under the License.
15+
16+
import unittest
17+
18+
import torch
19+
20+
from diffusers import HunyuanDiT2DModel
21+
from diffusers.utils.testing_utils import (
22+
enable_full_determinism,
23+
torch_device,
24+
)
25+
26+
from ..test_modeling_common import ModelTesterMixin
27+
28+
29+
enable_full_determinism()
30+
31+
32+
class HunyuanDiTTests(ModelTesterMixin, unittest.TestCase):
33+
model_class = HunyuanDiT2DModel
34+
main_input_name = "hidden_states"
35+
36+
@property
37+
def dummy_input(self):
38+
batch_size = 2
39+
num_channels = 4
40+
height = width = 8
41+
embedding_dim = 8
42+
sequence_length = 4
43+
sequence_length_t5 = 4
44+
45+
hidden_states = torch.randn((batch_size, num_channels, height, width)).to(torch_device)
46+
encoder_hidden_states = torch.randn((batch_size, sequence_length, embedding_dim)).to(torch_device)
47+
text_embedding_mask = torch.ones(size=(batch_size, sequence_length)).to(torch_device)
48+
encoder_hidden_states_t5 = torch.randn((batch_size, sequence_length_t5, embedding_dim)).to(torch_device)
49+
text_embedding_mask_t5 = torch.ones(size=(batch_size, sequence_length_t5)).to(torch_device)
50+
timestep = torch.randint(0, 1000, size=(batch_size,), dtype=encoder_hidden_states.dtype).to(torch_device)
51+
52+
original_size = [1024, 1024]
53+
target_size = [16, 16]
54+
crops_coords_top_left = [0, 0]
55+
add_time_ids = list(original_size + target_size + crops_coords_top_left)
56+
add_time_ids = torch.tensor([add_time_ids, add_time_ids], dtype=encoder_hidden_states.dtype).to(torch_device)
57+
style = torch.zeros(size=(batch_size,), dtype=int).to(torch_device)
58+
image_rotary_emb = [
59+
torch.ones(size=(1, 8), dtype=encoder_hidden_states.dtype),
60+
torch.zeros(size=(1, 8), dtype=encoder_hidden_states.dtype),
61+
]
62+
63+
return {
64+
"hidden_states": hidden_states,
65+
"encoder_hidden_states": encoder_hidden_states,
66+
"text_embedding_mask": text_embedding_mask,
67+
"encoder_hidden_states_t5": encoder_hidden_states_t5,
68+
"text_embedding_mask_t5": text_embedding_mask_t5,
69+
"timestep": timestep,
70+
"image_meta_size": add_time_ids,
71+
"style": style,
72+
"image_rotary_emb": image_rotary_emb,
73+
}
74+
75+
@property
76+
def input_shape(self):
77+
return (4, 8, 8)
78+
79+
@property
80+
def output_shape(self):
81+
return (8, 8, 8)
82+
83+
def prepare_init_args_and_inputs_for_common(self):
84+
init_dict = {
85+
"sample_size": 8,
86+
"patch_size": 2,
87+
"in_channels": 4,
88+
"num_layers": 1,
89+
"attention_head_dim": 8,
90+
"num_attention_heads": 2,
91+
"cross_attention_dim": 8,
92+
"cross_attention_dim_t5": 8,
93+
"pooled_projection_dim": 4,
94+
"hidden_size": 16,
95+
"text_len": 4,
96+
"text_len_t5": 4,
97+
"activation_fn": "gelu-approximate",
98+
}
99+
inputs_dict = self.dummy_input
100+
return init_dict, inputs_dict
101+
102+
def test_output(self):
103+
super().test_output(
104+
expected_output_shape=(self.dummy_input[self.main_input_name].shape[0],) + self.output_shape
105+
)
106+
107+
@unittest.skip("HunyuanDIT use a custom processor HunyuanAttnProcessor2_0")
108+
def test_set_xformers_attn_processor_for_determinism(self):
109+
pass
110+
111+
@unittest.skip("HunyuanDIT use a custom processor HunyuanAttnProcessor2_0")
112+
def test_set_attn_processor_for_determinism(self):
113+
pass

0 commit comments

Comments
 (0)