Skip to content

Commit 6485645

Browse files
committed
removed commented out numpy tests
1 parent a4e80d8 commit 6485645

File tree

1 file changed

+0
-120
lines changed

1 file changed

+0
-120
lines changed

tests/test_scheduler.py

Lines changed: 0 additions & 120 deletions
Original file line numberDiff line numberDiff line change
@@ -173,34 +173,6 @@ def test_step_shape(self):
173173
self.assertEqual(output_0.shape, sample.shape)
174174
self.assertEqual(output_0.shape, output_1.shape)
175175

176-
# def test_pytorch_equal_numpy(self):
177-
# kwargs = dict(self.forward_default_kwargs)
178-
179-
# num_inference_steps = kwargs.pop("num_inference_steps", None)
180-
181-
# for scheduler_class in self.scheduler_classes:
182-
# sample_pt = self.dummy_sample
183-
# residual_pt = 0.1 * sample_pt
184-
185-
# sample = sample_pt.numpy()
186-
# residual = 0.1 * sample
187-
188-
# scheduler_config = self.get_scheduler_config()
189-
# scheduler = scheduler_class(tensor_format="np", **scheduler_config)
190-
191-
# scheduler_pt = scheduler_class(tensor_format="pt", **scheduler_config)
192-
193-
# if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
194-
# scheduler.set_timesteps(num_inference_steps)
195-
# scheduler_pt.set_timesteps(num_inference_steps)
196-
# elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
197-
# kwargs["num_inference_steps"] = num_inference_steps
198-
199-
# output = scheduler.step(residual, 1, sample, **kwargs).prev_sample
200-
# output_pt = scheduler_pt.step(residual_pt, 1, sample_pt, **kwargs).prev_sample
201-
202-
# assert np.sum(np.abs(output - output_pt.numpy())) < 1e-4, "Scheduler outputs are not identical"
203-
204176
def test_scheduler_outputs_equivalence(self):
205177
def set_nan_tensor_to_zero(t):
206178
t[t != t] = 0
@@ -304,10 +276,6 @@ def test_variance(self):
304276
assert torch.sum(torch.abs(scheduler._get_variance(487) - 0.00979)) < 1e-5
305277
assert torch.sum(torch.abs(scheduler._get_variance(999) - 0.02)) < 1e-5
306278

307-
# TODO Make DDPM Numpy compatible
308-
def test_pytorch_equal_numpy(self):
309-
pass
310-
311279
def test_full_loop_no_noise(self):
312280
scheduler_class = self.scheduler_classes[0]
313281
scheduler_config = self.get_scheduler_config()
@@ -555,72 +523,6 @@ def full_loop(self, **config):
555523

556524
return sample
557525

558-
# def test_pytorch_equal_numpy(self):
559-
# kwargs = dict(self.forward_default_kwargs)
560-
# num_inference_steps = kwargs.pop("num_inference_steps", None)
561-
562-
# for scheduler_class in self.scheduler_classes:
563-
# sample_pt = self.dummy_sample
564-
# residual_pt = 0.1 * sample_pt
565-
# dummy_past_residuals_pt = [residual_pt + 0.2, residual_pt + 0.15, residual_pt + 0.1, residual_pt + 0.05]
566-
567-
# sample = sample_pt.numpy()
568-
# residual = 0.1 * sample
569-
# dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
570-
571-
# scheduler_config = self.get_scheduler_config()
572-
# scheduler = scheduler_class(tensor_format="np", **scheduler_config)
573-
574-
# scheduler_pt = scheduler_class(tensor_format="pt", **scheduler_config)
575-
576-
# if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
577-
# scheduler.set_timesteps(num_inference_steps)
578-
# scheduler_pt.set_timesteps(num_inference_steps)
579-
# elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
580-
# kwargs["num_inference_steps"] = num_inference_steps
581-
582-
# # copy over dummy past residuals (must be done after set_timesteps)
583-
# scheduler.ets = dummy_past_residuals[:]
584-
# scheduler_pt.ets = dummy_past_residuals_pt[:]
585-
586-
# output = scheduler.step_prk(residual, 1, sample, **kwargs).prev_sample
587-
# output_pt = scheduler_pt.step_prk(residual_pt, 1, sample_pt, **kwargs).prev_sample
588-
# assert np.sum(np.abs(output - output_pt.numpy())) < 1e-4, "Scheduler outputs are not identical"
589-
590-
# output = scheduler.step_plms(residual, 1, sample, **kwargs).prev_sample
591-
# output_pt = scheduler_pt.step_plms(residual_pt, 1, sample_pt, **kwargs).prev_sample
592-
593-
# assert np.sum(np.abs(output - output_pt.numpy())) < 1e-4, "Scheduler outputs are not identical"
594-
595-
# def test_set_format(self):
596-
# kwargs = dict(self.forward_default_kwargs)
597-
# num_inference_steps = kwargs.pop("num_inference_steps", None)
598-
599-
# for scheduler_class in self.scheduler_classes:
600-
# scheduler_config = self.get_scheduler_config()
601-
# scheduler = scheduler_class(tensor_format="np", **scheduler_config)
602-
# scheduler_pt = scheduler_class(tensor_format="pt", **scheduler_config)
603-
604-
# if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
605-
# scheduler.set_timesteps(num_inference_steps)
606-
# scheduler_pt.set_timesteps(num_inference_steps)
607-
608-
# for key, value in vars(scheduler).items():
609-
# # we only allow `ets` attr to be a list
610-
# assert not isinstance(value, list) or key in [
611-
# "ets"
612-
# ], f"Scheduler is not correctly set to np format, the attribute {key} is {type(value)}"
613-
614-
# # check if `scheduler.set_format` does convert correctly attrs to pt format
615-
# for key, value in vars(scheduler_pt).items():
616-
# # we only allow `ets` attr to be a list
617-
# assert not isinstance(value, list) or key in [
618-
# "ets"
619-
# ], f"Scheduler is not correctly set to pt format, the attribute {key} is {type(value)}"
620-
# assert not isinstance(
621-
# value, np.ndarray
622-
# ), f"Scheduler is not correctly set to pt format, the attribute {key} is {type(value)}"
623-
624526
def test_step_shape(self):
625527
kwargs = dict(self.forward_default_kwargs)
626528

@@ -953,28 +855,6 @@ def test_time_indices(self):
953855
for t in [0, 500, 800]:
954856
self.check_over_forward(time_step=t)
955857

956-
# def test_pytorch_equal_numpy(self):
957-
# for scheduler_class in self.scheduler_classes:
958-
# sample_pt = self.dummy_sample
959-
# residual_pt = 0.1 * sample_pt
960-
961-
# sample = sample_pt.numpy()
962-
# residual = 0.1 * sample
963-
964-
# scheduler_config = self.get_scheduler_config()
965-
# scheduler_config["tensor_format"] = "np"
966-
# scheduler = scheduler_class(**scheduler_config)
967-
968-
# scheduler_config["tensor_format"] = "pt"
969-
# scheduler_pt = scheduler_class(**scheduler_config)
970-
971-
# scheduler.set_timesteps(self.num_inference_steps)
972-
# scheduler_pt.set_timesteps(self.num_inference_steps)
973-
974-
# output = scheduler.step(residual, 1, sample).prev_sample
975-
# output_pt = scheduler_pt.step(residual_pt, 1, sample_pt).prev_sample
976-
# assert np.sum(np.abs(output - output_pt.numpy())) < 1e-4, "Scheduler outputs are not identical"
977-
978858
def test_full_loop_no_noise(self):
979859
scheduler_class = self.scheduler_classes[0]
980860
scheduler_config = self.get_scheduler_config()

0 commit comments

Comments
 (0)