|
| 1 | +#!/usr/bin/env python3 |
| 2 | +import argparse |
| 3 | +import os |
| 4 | + |
| 5 | +import jax as jnp |
| 6 | +import numpy as onp |
| 7 | +import torch |
| 8 | +import torch.nn as nn |
| 9 | +from music_spectrogram_diffusion import inference |
| 10 | +from t5x import checkpoints |
| 11 | + |
| 12 | +from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline |
| 13 | +from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, T5FilmDecoder |
| 14 | + |
| 15 | + |
| 16 | +MODEL = "base_with_context" |
| 17 | + |
| 18 | + |
| 19 | +def load_notes_encoder(weights, model): |
| 20 | + model.token_embedder.weight = nn.Parameter(torch.FloatTensor(weights["token_embedder"]["embedding"])) |
| 21 | + model.position_encoding.weight = nn.Parameter( |
| 22 | + torch.FloatTensor(weights["Embed_0"]["embedding"]), requires_grad=False |
| 23 | + ) |
| 24 | + for lyr_num, lyr in enumerate(model.encoders): |
| 25 | + ly_weight = weights[f"layers_{lyr_num}"] |
| 26 | + lyr.layer[0].layer_norm.weight = nn.Parameter( |
| 27 | + torch.FloatTensor(ly_weight["pre_attention_layer_norm"]["scale"]) |
| 28 | + ) |
| 29 | + |
| 30 | + attention_weights = ly_weight["attention"] |
| 31 | + lyr.layer[0].SelfAttention.q.weight = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T)) |
| 32 | + lyr.layer[0].SelfAttention.k.weight = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T)) |
| 33 | + lyr.layer[0].SelfAttention.v.weight = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T)) |
| 34 | + lyr.layer[0].SelfAttention.o.weight = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T)) |
| 35 | + |
| 36 | + lyr.layer[1].layer_norm.weight = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"])) |
| 37 | + |
| 38 | + lyr.layer[1].DenseReluDense.wi_0.weight = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T)) |
| 39 | + lyr.layer[1].DenseReluDense.wi_1.weight = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T)) |
| 40 | + lyr.layer[1].DenseReluDense.wo.weight = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T)) |
| 41 | + |
| 42 | + model.layer_norm.weight = nn.Parameter(torch.FloatTensor(weights["encoder_norm"]["scale"])) |
| 43 | + return model |
| 44 | + |
| 45 | + |
| 46 | +def load_continuous_encoder(weights, model): |
| 47 | + model.input_proj.weight = nn.Parameter(torch.FloatTensor(weights["input_proj"]["kernel"].T)) |
| 48 | + |
| 49 | + model.position_encoding.weight = nn.Parameter( |
| 50 | + torch.FloatTensor(weights["Embed_0"]["embedding"]), requires_grad=False |
| 51 | + ) |
| 52 | + |
| 53 | + for lyr_num, lyr in enumerate(model.encoders): |
| 54 | + ly_weight = weights[f"layers_{lyr_num}"] |
| 55 | + attention_weights = ly_weight["attention"] |
| 56 | + |
| 57 | + lyr.layer[0].SelfAttention.q.weight = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T)) |
| 58 | + lyr.layer[0].SelfAttention.k.weight = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T)) |
| 59 | + lyr.layer[0].SelfAttention.v.weight = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T)) |
| 60 | + lyr.layer[0].SelfAttention.o.weight = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T)) |
| 61 | + lyr.layer[0].layer_norm.weight = nn.Parameter( |
| 62 | + torch.FloatTensor(ly_weight["pre_attention_layer_norm"]["scale"]) |
| 63 | + ) |
| 64 | + |
| 65 | + lyr.layer[1].DenseReluDense.wi_0.weight = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T)) |
| 66 | + lyr.layer[1].DenseReluDense.wi_1.weight = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T)) |
| 67 | + lyr.layer[1].DenseReluDense.wo.weight = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T)) |
| 68 | + lyr.layer[1].layer_norm.weight = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"])) |
| 69 | + |
| 70 | + model.layer_norm.weight = nn.Parameter(torch.FloatTensor(weights["encoder_norm"]["scale"])) |
| 71 | + |
| 72 | + return model |
| 73 | + |
| 74 | + |
| 75 | +def load_decoder(weights, model): |
| 76 | + model.conditioning_emb[0].weight = nn.Parameter(torch.FloatTensor(weights["time_emb_dense0"]["kernel"].T)) |
| 77 | + model.conditioning_emb[2].weight = nn.Parameter(torch.FloatTensor(weights["time_emb_dense1"]["kernel"].T)) |
| 78 | + |
| 79 | + model.position_encoding.weight = nn.Parameter( |
| 80 | + torch.FloatTensor(weights["Embed_0"]["embedding"]), requires_grad=False |
| 81 | + ) |
| 82 | + |
| 83 | + model.continuous_inputs_projection.weight = nn.Parameter( |
| 84 | + torch.FloatTensor(weights["continuous_inputs_projection"]["kernel"].T) |
| 85 | + ) |
| 86 | + |
| 87 | + for lyr_num, lyr in enumerate(model.decoders): |
| 88 | + ly_weight = weights[f"layers_{lyr_num}"] |
| 89 | + lyr.layer[0].layer_norm.weight = nn.Parameter( |
| 90 | + torch.FloatTensor(ly_weight["pre_self_attention_layer_norm"]["scale"]) |
| 91 | + ) |
| 92 | + |
| 93 | + lyr.layer[0].FiLMLayer.scale_bias.weight = nn.Parameter( |
| 94 | + torch.FloatTensor(ly_weight["FiLMLayer_0"]["DenseGeneral_0"]["kernel"].T) |
| 95 | + ) |
| 96 | + |
| 97 | + attention_weights = ly_weight["self_attention"] |
| 98 | + lyr.layer[0].attention.to_q.weight = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T)) |
| 99 | + lyr.layer[0].attention.to_k.weight = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T)) |
| 100 | + lyr.layer[0].attention.to_v.weight = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T)) |
| 101 | + lyr.layer[0].attention.to_out[0].weight = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T)) |
| 102 | + |
| 103 | + attention_weights = ly_weight["MultiHeadDotProductAttention_0"] |
| 104 | + lyr.layer[1].attention.to_q.weight = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T)) |
| 105 | + lyr.layer[1].attention.to_k.weight = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T)) |
| 106 | + lyr.layer[1].attention.to_v.weight = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T)) |
| 107 | + lyr.layer[1].attention.to_out[0].weight = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T)) |
| 108 | + lyr.layer[1].layer_norm.weight = nn.Parameter( |
| 109 | + torch.FloatTensor(ly_weight["pre_cross_attention_layer_norm"]["scale"]) |
| 110 | + ) |
| 111 | + |
| 112 | + lyr.layer[2].layer_norm.weight = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"])) |
| 113 | + lyr.layer[2].film.scale_bias.weight = nn.Parameter( |
| 114 | + torch.FloatTensor(ly_weight["FiLMLayer_1"]["DenseGeneral_0"]["kernel"].T) |
| 115 | + ) |
| 116 | + lyr.layer[2].DenseReluDense.wi_0.weight = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T)) |
| 117 | + lyr.layer[2].DenseReluDense.wi_1.weight = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T)) |
| 118 | + lyr.layer[2].DenseReluDense.wo.weight = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T)) |
| 119 | + |
| 120 | + model.decoder_norm.weight = nn.Parameter(torch.FloatTensor(weights["decoder_norm"]["scale"])) |
| 121 | + |
| 122 | + model.spec_out.weight = nn.Parameter(torch.FloatTensor(weights["spec_out_dense"]["kernel"].T)) |
| 123 | + |
| 124 | + return model |
| 125 | + |
| 126 | + |
| 127 | +def main(args): |
| 128 | + t5_checkpoint = checkpoints.load_t5x_checkpoint(args.checkpoint_path) |
| 129 | + t5_checkpoint = jnp.tree_util.tree_map(onp.array, t5_checkpoint) |
| 130 | + |
| 131 | + gin_overrides = [ |
| 132 | + "from __gin__ import dynamic_registration", |
| 133 | + "from music_spectrogram_diffusion.models.diffusion import diffusion_utils", |
| 134 | + "diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0", |
| 135 | + "diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()", |
| 136 | + ] |
| 137 | + |
| 138 | + gin_file = os.path.join(args.checkpoint_path, "..", "config.gin") |
| 139 | + gin_config = inference.parse_training_gin_file(gin_file, gin_overrides) |
| 140 | + synth_model = inference.InferenceModel(args.checkpoint_path, gin_config) |
| 141 | + |
| 142 | + scheduler = DDPMScheduler(beta_schedule="squaredcos_cap_v2", variance_type="fixed_large") |
| 143 | + |
| 144 | + notes_encoder = SpectrogramNotesEncoder( |
| 145 | + max_length=synth_model.sequence_length["inputs"], |
| 146 | + vocab_size=synth_model.model.module.config.vocab_size, |
| 147 | + d_model=synth_model.model.module.config.emb_dim, |
| 148 | + dropout_rate=synth_model.model.module.config.dropout_rate, |
| 149 | + num_layers=synth_model.model.module.config.num_encoder_layers, |
| 150 | + num_heads=synth_model.model.module.config.num_heads, |
| 151 | + d_kv=synth_model.model.module.config.head_dim, |
| 152 | + d_ff=synth_model.model.module.config.mlp_dim, |
| 153 | + feed_forward_proj="gated-gelu", |
| 154 | + ) |
| 155 | + |
| 156 | + continuous_encoder = SpectrogramContEncoder( |
| 157 | + input_dims=synth_model.audio_codec.n_dims, |
| 158 | + targets_context_length=synth_model.sequence_length["targets_context"], |
| 159 | + d_model=synth_model.model.module.config.emb_dim, |
| 160 | + dropout_rate=synth_model.model.module.config.dropout_rate, |
| 161 | + num_layers=synth_model.model.module.config.num_encoder_layers, |
| 162 | + num_heads=synth_model.model.module.config.num_heads, |
| 163 | + d_kv=synth_model.model.module.config.head_dim, |
| 164 | + d_ff=synth_model.model.module.config.mlp_dim, |
| 165 | + feed_forward_proj="gated-gelu", |
| 166 | + ) |
| 167 | + |
| 168 | + decoder = T5FilmDecoder( |
| 169 | + input_dims=synth_model.audio_codec.n_dims, |
| 170 | + targets_length=synth_model.sequence_length["targets_context"], |
| 171 | + max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time, |
| 172 | + d_model=synth_model.model.module.config.emb_dim, |
| 173 | + num_layers=synth_model.model.module.config.num_decoder_layers, |
| 174 | + num_heads=synth_model.model.module.config.num_heads, |
| 175 | + d_kv=synth_model.model.module.config.head_dim, |
| 176 | + d_ff=synth_model.model.module.config.mlp_dim, |
| 177 | + dropout_rate=synth_model.model.module.config.dropout_rate, |
| 178 | + ) |
| 179 | + |
| 180 | + notes_encoder = load_notes_encoder(t5_checkpoint["target"]["token_encoder"], notes_encoder) |
| 181 | + continuous_encoder = load_continuous_encoder(t5_checkpoint["target"]["continuous_encoder"], continuous_encoder) |
| 182 | + decoder = load_decoder(t5_checkpoint["target"]["decoder"], decoder) |
| 183 | + |
| 184 | + melgan = OnnxRuntimeModel.from_pretrained("kashif/soundstream_mel_decoder") |
| 185 | + |
| 186 | + pipe = SpectrogramDiffusionPipeline( |
| 187 | + notes_encoder=notes_encoder, |
| 188 | + continuous_encoder=continuous_encoder, |
| 189 | + decoder=decoder, |
| 190 | + scheduler=scheduler, |
| 191 | + melgan=melgan, |
| 192 | + ) |
| 193 | + if args.save: |
| 194 | + pipe.save_pretrained(args.output_path) |
| 195 | + |
| 196 | + |
| 197 | +if __name__ == "__main__": |
| 198 | + parser = argparse.ArgumentParser() |
| 199 | + |
| 200 | + parser.add_argument("--output_path", default=None, type=str, required=True, help="Path to the converted model.") |
| 201 | + parser.add_argument( |
| 202 | + "--save", default=True, type=bool, required=False, help="Whether to save the converted model or not." |
| 203 | + ) |
| 204 | + parser.add_argument( |
| 205 | + "--checkpoint_path", |
| 206 | + default=f"{MODEL}/checkpoint_500000", |
| 207 | + type=str, |
| 208 | + required=False, |
| 209 | + help="Path to the original jax model checkpoint.", |
| 210 | + ) |
| 211 | + args = parser.parse_args() |
| 212 | + |
| 213 | + main(args) |
0 commit comments