@@ -46,10 +46,10 @@ def test_xgbregressor_default_params(penguins_df_default_index, dataset_id):
46
46
reloaded_model = model .to_gbq (
47
47
f"{ dataset_id } .temp_configured_xgbregressor_model" , replace = True
48
48
)
49
- # TODO(b/340888645): fix type error
49
+ assert reloaded_model . _bqml_model is not None
50
50
assert (
51
51
f"{ dataset_id } .temp_configured_xgbregressor_model"
52
- in reloaded_model ._bqml_model .model_name # type: ignore
52
+ in reloaded_model ._bqml_model .model_name
53
53
)
54
54
55
55
@@ -98,10 +98,10 @@ def test_xgbregressor_dart_booster_multiple_params(
98
98
reloaded_model = model .to_gbq (
99
99
f"{ dataset_id } .temp_configured_xgbregressor_model" , replace = True
100
100
)
101
- # TODO(b/340888645): fix type error
101
+ assert reloaded_model . _bqml_model is not None
102
102
assert (
103
103
f"{ dataset_id } .temp_configured_xgbregressor_model"
104
- in reloaded_model ._bqml_model .model_name # type: ignore
104
+ in reloaded_model ._bqml_model .model_name
105
105
)
106
106
assert reloaded_model .booster == "DART"
107
107
assert reloaded_model .dart_normalized_type == "TREE"
@@ -148,10 +148,10 @@ def test_xgbclassifier_default_params(penguins_df_default_index, dataset_id):
148
148
reloaded_model = model .to_gbq (
149
149
f"{ dataset_id } .temp_configured_xgbclassifier_model" , replace = True
150
150
)
151
- # TODO(b/340888645): fix type error
151
+ assert reloaded_model . _bqml_model is not None
152
152
assert (
153
153
f"{ dataset_id } .temp_configured_xgbclassifier_model"
154
- in reloaded_model ._bqml_model .model_name # type: ignore
154
+ in reloaded_model ._bqml_model .model_name
155
155
)
156
156
157
157
@@ -199,10 +199,10 @@ def test_xgbclassifier_dart_booster_multiple_params(
199
199
reloaded_model = model .to_gbq (
200
200
f"{ dataset_id } .temp_configured_xgbclassifier_model" , replace = True
201
201
)
202
- # TODO(b/340888645): fix type error
202
+ assert reloaded_model . _bqml_model is not None
203
203
assert (
204
204
f"{ dataset_id } .temp_configured_xgbclassifier_model"
205
- in reloaded_model ._bqml_model .model_name # type: ignore
205
+ in reloaded_model ._bqml_model .model_name
206
206
)
207
207
assert reloaded_model .booster == "DART"
208
208
assert reloaded_model .dart_normalized_type == "TREE"
@@ -250,10 +250,10 @@ def test_randomforestregressor_default_params(penguins_df_default_index, dataset
250
250
reloaded_model = model .to_gbq (
251
251
f"{ dataset_id } .temp_configured_randomforestregressor_model" , replace = True
252
252
)
253
- # TODO(b/340888645): fix type error
253
+ assert reloaded_model . _bqml_model is not None
254
254
assert (
255
255
f"{ dataset_id } .temp_configured_randomforestregressor_model"
256
- in reloaded_model ._bqml_model .model_name # type: ignore
256
+ in reloaded_model ._bqml_model .model_name
257
257
)
258
258
259
259
@@ -297,10 +297,10 @@ def test_randomforestregressor_multiple_params(penguins_df_default_index, datase
297
297
reloaded_model = model .to_gbq (
298
298
f"{ dataset_id } .temp_configured_randomforestregressor_model" , replace = True
299
299
)
300
- # TODO(b/340888645): fix type error
300
+ assert reloaded_model . _bqml_model is not None
301
301
assert (
302
302
f"{ dataset_id } .temp_configured_randomforestregressor_model"
303
- in reloaded_model ._bqml_model .model_name # type: ignore
303
+ in reloaded_model ._bqml_model .model_name
304
304
)
305
305
assert reloaded_model .tree_method == "AUTO"
306
306
assert reloaded_model .colsample_bytree == 0.95
@@ -344,18 +344,17 @@ def test_randomforestclassifier_default_params(penguins_df_default_index, datase
344
344
reloaded_model = model .to_gbq (
345
345
f"{ dataset_id } .temp_configured_randomforestclassifier_model" , replace = True
346
346
)
347
- # TODO(b/340888645): fix type error
347
+ assert reloaded_model . _bqml_model is not None
348
348
assert (
349
349
f"{ dataset_id } .temp_configured_randomforestclassifier_model"
350
- in reloaded_model ._bqml_model .model_name # type: ignore
350
+ in reloaded_model ._bqml_model .model_name
351
351
)
352
352
353
353
354
354
@pytest .mark .flaky (retries = 2 )
355
355
def test_randomforestclassifier_multiple_params (penguins_df_default_index , dataset_id ):
356
- # TODO(b/340888645): fix type error
357
356
model = bigframes .ml .ensemble .RandomForestClassifier (
358
- tree_method = "AUTO" , # type: ignore
357
+ tree_method = "auto" ,
359
358
min_tree_child_weight = 2 ,
360
359
colsample_bytree = 0.95 ,
361
360
colsample_bylevel = 0.95 ,
@@ -391,12 +390,12 @@ def test_randomforestclassifier_multiple_params(penguins_df_default_index, datas
391
390
reloaded_model = model .to_gbq (
392
391
f"{ dataset_id } .temp_configured_randomforestclassifier_model" , replace = True
393
392
)
394
- # TODO(b/340888645): fix type error
393
+ assert reloaded_model . _bqml_model is not None
395
394
assert (
396
395
f"{ dataset_id } .temp_configured_randomforestclassifier_model"
397
- in reloaded_model ._bqml_model .model_name # type: ignore
396
+ in reloaded_model ._bqml_model .model_name
398
397
)
399
- assert reloaded_model .tree_method == "AUTO "
398
+ assert reloaded_model .tree_method == "auto "
400
399
assert reloaded_model .colsample_bytree == 0.95
401
400
assert reloaded_model .colsample_bylevel == 0.95
402
401
assert reloaded_model .colsample_bynode == 0.95
0 commit comments