Skip to content

ggml : fix YARN + add tests + add asserts #7617

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 6 commits into from
May 29, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 3 additions & 1 deletion ggml-cuda.cu
Original file line number Diff line number Diff line change
Expand Up @@ -1870,7 +1870,7 @@ static void ggml_cuda_mul_mat_batched_cublas(ggml_backend_cuda_context & ctx, co
}
}
#else
if (r2 == 1 && r3 == 1 && src0->nb[2]*src0->ne[2] == src0->nb[3] && src1->nb[2]*src1->ne[2] == src1->nb[3]) {
if (r2 == 1 && r3 == 1 && ggml_is_contiguous_2(src0) && ggml_is_contiguous_2(src1)) {
// there is no broadcast and src0, src1 are contiguous across dims 2, 3
// use cublasGemmStridedBatchedEx
CUBLAS_CHECK(
Expand Down Expand Up @@ -2886,7 +2886,9 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons
case GGML_OP_CONT:
case GGML_OP_DIAG_MASK_INF:
case GGML_OP_SOFT_MAX:
return true;
case GGML_OP_ROPE:
return ggml_is_contiguous(op->src[0]);
case GGML_OP_IM2COL:
case GGML_OP_POOL_2D:
case GGML_OP_SUM_ROWS:
Expand Down
6 changes: 6 additions & 0 deletions ggml-cuda/norm.cu
Original file line number Diff line number Diff line change
Expand Up @@ -170,6 +170,8 @@ void ggml_cuda_op_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
float * dst_d = (float *)dst->data;
cudaStream_t stream = ctx.stream();

GGML_ASSERT(ggml_is_contiguous(src0));

GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);

Expand All @@ -188,6 +190,8 @@ void ggml_cuda_op_group_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst)
float * dst_d = (float *)dst->data;
cudaStream_t stream = ctx.stream();

GGML_ASSERT(ggml_is_contiguous(src0));

GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);

Expand All @@ -202,6 +206,8 @@ void ggml_cuda_op_rms_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
float * dst_d = (float *)dst->data;
cudaStream_t stream = ctx.stream();

GGML_ASSERT(ggml_is_contiguous(src0));

GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);

Expand Down
18 changes: 8 additions & 10 deletions ggml-cuda/rope.cu
Original file line number Diff line number Diff line change
Expand Up @@ -61,7 +61,7 @@ static __global__ void rope(
template<typename T, bool has_pos, bool has_freq_facs>
static __global__ void rope_neox(
const T * x, T * dst, int ncols, int n_dims, const int32_t * pos, float freq_scale, int p_delta_rows,
float ext_factor, float attn_factor, rope_corr_dims corr_dims, float theta_scale, float inv_ndims, const float * freq_factors
float ext_factor, float attn_factor, rope_corr_dims corr_dims, float theta_scale, const float * freq_factors
) {
const int col = 2*(blockDim.y*blockIdx.y + threadIdx.y);

Expand All @@ -85,15 +85,13 @@ static __global__ void rope_neox(
const int i = row*ncols + ib*n_dims + ic/2;
const int i2 = row/p_delta_rows;

float cur_rot = inv_ndims * ic - ib;

const int p = has_pos ? pos[i2] : 0;
const float freq_factor = has_freq_facs ? freq_factors[ic/2] : 1.0f;

const float theta_base = p*freq_scale*powf(theta_scale, col/2.0f)/freq_factor;
const float theta_base = p*powf(theta_scale, col/2.0f)/freq_factor;

float cos_theta, sin_theta;
rope_yarn(theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor, &cos_theta, &sin_theta);
rope_yarn(theta_base, freq_scale, corr_dims, ic, ext_factor, attn_factor, &cos_theta, &sin_theta);

const float x0 = x[i + 0];
const float x1 = x[i + n_dims/2];
Expand Down Expand Up @@ -174,30 +172,29 @@ static void rope_neox_cuda(
const dim3 block_nums(nrows, num_blocks_x, 1);

const float theta_scale = powf(freq_base, -2.0f/n_dims);
const float inv_ndims = -1.0f / n_dims;

if (pos == nullptr) {
if (freq_factors == nullptr) {
rope_neox<T, false, false><<<block_nums, block_dims, 0, stream>>>(
x, dst, ncols, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims,
theta_scale, inv_ndims, freq_factors
theta_scale, freq_factors
);
} else {
rope_neox<T, false, true><<<block_nums, block_dims, 0, stream>>>(
x, dst, ncols, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims,
theta_scale, inv_ndims, freq_factors
theta_scale, freq_factors
);
}
} else {
if (freq_factors == nullptr) {
rope_neox<T, true, false><<<block_nums, block_dims, 0, stream>>>(
x, dst, ncols, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims,
theta_scale, inv_ndims, freq_factors
theta_scale, freq_factors
);
} else {
rope_neox<T, true, true><<<block_nums, block_dims, 0, stream>>>(
x, dst, ncols, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims,
theta_scale, inv_ndims, freq_factors
theta_scale, freq_factors
);
}
}
Expand Down Expand Up @@ -254,6 +251,7 @@ void ggml_cuda_op_rope(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
float * dst_d = (float *)dst->data;
cudaStream_t stream = ctx.stream();

GGML_ASSERT(ggml_is_contiguous(src0));
GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
GGML_ASSERT(src0->type == dst->type);
Expand Down
4 changes: 3 additions & 1 deletion ggml-kompute.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -1597,7 +1597,9 @@ static void ggml_vk_graph_compute(struct ggml_kompute_context * ctx, struct ggml
{
GGML_ASSERT(ne00 == ne10);

// TODO: assert that dim2 and dim3 are contiguous
ggml_is_contiguous_2(src0);
ggml_is_contiguous_2(src1);
Comment on lines +1600 to +1601
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Same here.


GGML_ASSERT(ne12 % ne02 == 0);
GGML_ASSERT(ne13 % ne03 == 0);

Expand Down
8 changes: 7 additions & 1 deletion ggml-metal.m
Original file line number Diff line number Diff line change
Expand Up @@ -1519,7 +1519,9 @@ static enum ggml_status ggml_metal_graph_compute(
{
GGML_ASSERT(ne00 == ne10);

// TODO: assert that dim2 and dim3 are contiguous
ggml_is_contiguous_2(src0);
ggml_is_contiguous_2(src1);
Comment on lines +1522 to +1523
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Missing GGML_ASSERT?

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Thanks - fixing


GGML_ASSERT(ne12 % ne02 == 0);
GGML_ASSERT(ne13 % ne03 == 0);

Expand Down Expand Up @@ -2187,6 +2189,7 @@ static enum ggml_status ggml_metal_graph_compute(
case GGML_OP_RMS_NORM:
{
GGML_ASSERT(ne00 % 4 == 0);
GGML_ASSERT(ggml_is_contiguous_1(src0));

float eps;
memcpy(&eps, dst->op_params, sizeof(float));
Expand Down Expand Up @@ -2214,6 +2217,7 @@ static enum ggml_status ggml_metal_graph_compute(
case GGML_OP_GROUP_NORM:
{
GGML_ASSERT(ne00 % 4 == 0);
GGML_ASSERT(ggml_is_contiguous(src0));

//float eps;
//memcpy(&eps, dst->op_params, sizeof(float));
Expand Down Expand Up @@ -2247,6 +2251,8 @@ static enum ggml_status ggml_metal_graph_compute(
} break;
case GGML_OP_NORM:
{
GGML_ASSERT(ggml_is_contiguous_1(src0));

float eps;
memcpy(&eps, dst->op_params, sizeof(float));

Expand Down
16 changes: 6 additions & 10 deletions ggml-metal.metal
Original file line number Diff line number Diff line change
Expand Up @@ -1767,13 +1767,13 @@ kernel void kernel_rope(

const int64_t p = pos[i2];

const float theta_0 = (float)p;
const float theta_base = (float)p;
const float inv_ndims = -1.f/n_dims;

if (!is_neox) {
for (int64_t i0 = 2*tiitg; i0 < ne0; i0 += 2*tptg.x) {
const float theta = theta_base * pow(freq_base, inv_ndims*i0);

const float theta = theta_0 * pow(freq_base, inv_ndims*i0);
float cos_theta, sin_theta;
rope_yarn(theta, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta);

Expand All @@ -1789,18 +1789,14 @@ kernel void kernel_rope(
} else {
for (int64_t ic = 2*tiitg; ic < ne0; ic += 2*tptg.x) {
if (ic < n_dims) {
const int64_t ib = 0;
const int64_t i0 = ic/2;

// simplified from `(ib * n_dims + ic) * inv_ndims`
const float cur_rot = inv_ndims*ic - ib;
const float freq_factor = src2 != src0 ? src2[ic/2] : 1.0f;
const float freq_factor = src2 != src0 ? src2[i0] : 1.0f;

const float theta = theta_0 * pow(freq_base, cur_rot) / freq_factor;
const float theta = theta_base * pow(freq_base, inv_ndims*ic);

float cos_theta, sin_theta;
rope_yarn(theta, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor, &cos_theta, &sin_theta);

const int64_t i0 = ib*n_dims + ic/2;
rope_yarn(theta/freq_factor, freq_scale, corr_dims, ic, ext_factor, attn_factor, &cos_theta, &sin_theta);

device const T * const src = (device T *)((device char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
device T * dst_data = (device T *)((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
Expand Down
2 changes: 1 addition & 1 deletion ggml-sycl.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -15183,7 +15183,7 @@ static void ggml_sycl_mul_mat_batched_sycl(const ggml_tensor *src0,
const int64_t r2 = ne12/ne02;
const int64_t r3 = ne13/ne03;

if (r2 == 1 && r3 == 1 && src0->nb[2]*src0->ne[2] == src0->nb[3] && src1->nb[2]*src1->ne[2] == src1->nb[3]) {
if (r2 == 1 && r3 == 1 && ggml_is_contiguous_2(src0) && ggml_is_contiguous_2(src1)) {
// there is no broadcast and src0, src1 are contiguous across dims 2, 3
SYCL_CHECK(CHECK_TRY_ERROR(dpct::gemm_batch(
*g_sycl_handles[g_main_device], oneapi::mkl::transpose::trans,
Expand Down
74 changes: 36 additions & 38 deletions ggml.c
Original file line number Diff line number Diff line change
Expand Up @@ -3221,7 +3221,11 @@ GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
}

static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
GGML_CALL bool ggml_is_contiguous_0(const struct ggml_tensor * tensor) {
return ggml_is_contiguous(tensor);
}

GGML_CALL bool ggml_is_contiguous_1(const struct ggml_tensor * tensor) {
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");

return
Expand All @@ -3230,6 +3234,14 @@ static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * te
tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
}

GGML_CALL bool ggml_is_contiguous_2(const struct ggml_tensor * tensor) {
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");

return
tensor->nb[0] == ggml_type_size(tensor->type) &&
tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
}

GGML_CALL bool ggml_is_permuted(const struct ggml_tensor * tensor) {
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");

Expand Down Expand Up @@ -11420,8 +11432,8 @@ static void ggml_compute_forward_gelu_f32(

const struct ggml_tensor * src0 = dst->src[0];

GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
GGML_ASSERT(ggml_is_contiguous_1(src0));
GGML_ASSERT(ggml_is_contiguous_1(dst));
GGML_ASSERT(ggml_are_same_shape(src0, dst));

if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
Expand Down Expand Up @@ -11483,8 +11495,8 @@ static void ggml_compute_forward_gelu_quick_f32(

const struct ggml_tensor * src0 = dst->src[0];

GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
GGML_ASSERT(ggml_is_contiguous_1(src0));
GGML_ASSERT(ggml_is_contiguous_1(dst));
GGML_ASSERT(ggml_are_same_shape(src0, dst));

if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
Expand Down Expand Up @@ -11546,8 +11558,8 @@ static void ggml_compute_forward_silu_f32(

const struct ggml_tensor * src0 = dst->src[0];

GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
GGML_ASSERT(ggml_is_contiguous_1(src0));
GGML_ASSERT(ggml_is_contiguous_1(dst));
GGML_ASSERT(ggml_are_same_shape(src0, dst));

if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
Expand Down Expand Up @@ -11658,9 +11670,9 @@ static void ggml_compute_forward_silu_back_f32(
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * grad = dst->src[1];

GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
GGML_ASSERT(ggml_is_contiguous_1(grad));
GGML_ASSERT(ggml_is_contiguous_1(src0));
GGML_ASSERT(ggml_is_contiguous_1(dst));
GGML_ASSERT(ggml_are_same_shape(src0, dst));
GGML_ASSERT(ggml_are_same_shape(src0, grad));

Expand Down Expand Up @@ -14358,7 +14370,7 @@ static void ggml_compute_forward_rope_f32(
int ir = 0;

const float theta_scale = powf(freq_base, -2.0f/n_dims);
const float inv_ndims = -1.f/n_dims;

float corr_dims[2];
ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);

Expand Down Expand Up @@ -14407,7 +14419,7 @@ static void ggml_compute_forward_rope_f32(
const float cos_block_theta = cosf(block_theta);
const float sin_block_theta = sinf(block_theta) * sin_sign;

theta_base *= theta_scale;
theta_base *= theta_scale;
block_theta *= theta_scale;

const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
Expand Down Expand Up @@ -14442,29 +14454,22 @@ static void ggml_compute_forward_rope_f32(
dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
}
} else {
// TODO: this might be wrong for ne0 != n_dims - need double check
// it seems we have to rope just the first n_dims elements and do nothing with the rest
// ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
theta_base *= freq_scale;
// ref: https://github.com/jquesnelle/yarn/blob/master/scaled_rope/LlamaYaRNScaledRotaryEmbedding.py
for (int64_t ic = 0; ic < ne0; ic += 2) {
if (ic < n_dims) {
const int64_t ib = 0;
const int64_t i0 = ic/2;

// simplified from `(ib * n_dims + ic) * inv_ndims`
float cur_rot = inv_ndims * ic - ib;
float freq_factor = freq_factors ? freq_factors[ic/2] : 1.0f;
const float freq_factor = freq_factors ? freq_factors[i0] : 1.0f;

float cos_theta, sin_theta;
rope_yarn(
theta_base/freq_factor, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
theta_base/freq_factor, freq_scale, corr_dims, ic, ext_factor, attn_factor,
&cos_theta, &sin_theta
);
sin_theta *= sin_sign;

sin_theta *= sin_sign;
theta_base *= theta_scale;

const int64_t i0 = ib*n_dims + ic/2;

const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);

Expand Down Expand Up @@ -14543,7 +14548,7 @@ static void ggml_compute_forward_rope_f16(
int ir = 0;

const float theta_scale = powf(freq_base, -2.0f/n_dims);
const float inv_ndims = -1.f/n_dims;

float corr_dims[2];
ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);

Expand Down Expand Up @@ -14592,7 +14597,7 @@ static void ggml_compute_forward_rope_f16(
const float cos_block_theta = cosf(block_theta);
const float sin_block_theta = sinf(block_theta) * sin_sign;

theta_base *= theta_scale;
theta_base *= theta_scale;
block_theta *= theta_scale;

const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
Expand Down Expand Up @@ -14623,29 +14628,22 @@ static void ggml_compute_forward_rope_f16(
dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
}
} else {
// TODO: this might be wrong for ne0 != n_dims - need double check
// it seems we have to rope just the first n_dims elements and do nothing with the rest
// ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
theta_base *= freq_scale;
// ref: https://github.com/jquesnelle/yarn/blob/master/scaled_rope/LlamaYaRNScaledRotaryEmbedding.py
for (int64_t ic = 0; ic < ne0; ic += 2) {
if (ic < n_dims) {
const int64_t ib = 0;
const int64_t i0 = ic/2;

// simplified from `(ib * n_dims + ic) * inv_ndims`
float cur_rot = inv_ndims * ic - ib;
float freq_factor = freq_factors ? freq_factors[ic/2] : 1.0f;
const float freq_factor = freq_factors ? freq_factors[i0] : 1.0f;

float cos_theta, sin_theta;
rope_yarn(
theta_base/freq_factor, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
theta_base/freq_factor, freq_scale, corr_dims, ic, ext_factor, attn_factor,
&cos_theta, &sin_theta
);
sin_theta *= sin_sign;

sin_theta *= sin_sign;
theta_base *= theta_scale;

const int64_t i0 = ib*n_dims + ic/2;

const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);

Expand Down
Loading
Loading