Skip to content

convert : refactor vocab selection logic #6355

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 13 commits into from
Mar 28, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
27 changes: 9 additions & 18 deletions convert-hf-to-gguf.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,7 @@
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
import gguf

from convert import HfVocab
from convert import LlamaHfVocab


###### MODEL DEFINITIONS ######
Expand Down Expand Up @@ -230,7 +230,7 @@ def _get_part_names(self):
def _set_vocab_gpt2(self):
dir_model = self.dir_model
hparams = self.hparams
tokens: list[bytearray] = []
tokens: list[str] = []
toktypes: list[int] = []

from transformers import AutoTokenizer
Expand All @@ -243,8 +243,7 @@ def _set_vocab_gpt2(self):

for i in range(vocab_size):
if i not in reverse_vocab:
pad_token = f"[PAD{i}]".encode('utf-8')
tokens.append(bytearray(pad_token))
tokens.append(f"[PAD{i}]")
toktypes.append(gguf.TokenType.USER_DEFINED)
elif reverse_vocab[i] in added_vocab:
tokens.append(reverse_vocab[i])
Expand All @@ -266,7 +265,7 @@ def _set_vocab_gpt2(self):
def _set_vocab_qwen(self):
dir_model = self.dir_model
hparams = self.hparams
tokens: list[bytearray] = []
tokens: list[str] = []
toktypes: list[int] = []

from transformers import AutoTokenizer
Expand All @@ -291,8 +290,7 @@ def _set_vocab_qwen(self):

for i in range(vocab_size):
if i not in reverse_vocab:
pad_token = f"[PAD{i}]".encode("utf-8")
tokens.append(bytearray(pad_token))
tokens.append(f"[PAD{i}]")
toktypes.append(gguf.TokenType.USER_DEFINED)
elif reverse_vocab[i] in added_vocab:
tokens.append(reverse_vocab[i])
Expand Down Expand Up @@ -372,12 +370,8 @@ def _set_vocab_sentencepiece(self):
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
special_vocab.add_to_gguf(self.gguf_writer)

def _set_vocab_hf(self):
path = self.dir_model
added_tokens_path = self.dir_model
vocab = HfVocab(
path, added_tokens_path if added_tokens_path.exists() else None
)
def _set_vocab_llama_hf(self):
vocab = LlamaHfVocab(self.dir_model)
tokens = []
scores = []
toktypes = []
Expand Down Expand Up @@ -1099,7 +1093,7 @@ def set_gguf_parameters(self):
self.gguf_writer.add_file_type(self.ftype)

def set_vocab(self):
self._set_vocab_hf()
self._set_vocab_llama_hf()

def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
if n_kv_head is not None and n_head != n_kv_head:
Expand Down Expand Up @@ -1700,11 +1694,8 @@ def set_gguf_parameters(self):
self.gguf_writer.add_pooling_type(pooling_type)

def set_vocab(self):
path = self.dir_model
added_tokens_path = self.dir_model if self.dir_model.exists() else None

# use huggingface vocab to get all tokens
vocab = HfVocab(path, added_tokens_path)
vocab = LlamaHfVocab(self.dir_model, ignore_nonllama=True)
tokens, scores, toktypes = zip(*vocab.all_tokens())
assert len(tokens) == vocab.vocab_size
self.vocab_size = vocab.vocab_size
Expand Down
6 changes: 3 additions & 3 deletions convert-persimmon-to-gguf.py
Original file line number Diff line number Diff line change
Expand Up @@ -106,12 +106,12 @@ def main():
tensor_map = gguf.get_tensor_name_map(arch, block_count)
print(tensor_map)
for name in tensors.keys():
data = tensors[name]
data_torch = tensors[name]
if name.endswith(".self_attention.rotary_emb.inv_freq"):
continue
old_dtype = data.dtype
old_dtype = data_torch.dtype
# TODO: FP16 conversion produces garbage outputs. (Q8_0 does not, so..?)
data = data.to(torch.float32).squeeze().numpy()
data = data_torch.to(torch.float32).squeeze().numpy()
new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
if new_name is None:
print("Can not map tensor '" + name + "'")
Expand Down
Loading