Skip to content

HellaSwag: split token evaluation into batches if needed #2681

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Aug 21, 2023
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
39 changes: 28 additions & 11 deletions examples/perplexity/perplexity.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -122,6 +122,27 @@ void perplexity(llama_context * ctx, const gpt_params & params) {
printf("\n");
}

std::vector<float> hellaswag_evaluate_tokens(llama_context * ctx, const std::vector<int>& tokens, int n_past, int n_batch,
int n_vocab, int n_thread) {
std::vector<float> result;
result.reserve(tokens.size() * n_vocab);
size_t n_chunk = (tokens.size() + n_batch - 1)/n_batch;
for (size_t i_chunk = 0; i_chunk < n_chunk; ++i_chunk) {
size_t n_tokens = tokens.size() - i_chunk * n_batch;
n_tokens = std::min(n_tokens, size_t(n_batch));
if (llama_eval(ctx, tokens.data() + i_chunk * n_batch, n_tokens, n_past, n_thread)) {
fprintf(stderr, "%s : failed to eval\n", __func__);
return {};
}

const auto logits = llama_get_logits(ctx);
result.insert(result.end(), logits, logits + n_tokens * n_vocab);

n_past += n_tokens;
}
return result;
}

void hellaswag_score(llama_context * ctx, const gpt_params & params) {
// Calculates hellaswag score (acc_norm) from prompt
//
Expand Down Expand Up @@ -235,15 +256,13 @@ void hellaswag_score(llama_context * ctx, const gpt_params & params) {
query_embd.resize(32);
}

// Evaluate the query
if (llama_eval(ctx, query_embd.data(), query_embd.size(), 0, params.n_threads)) {
auto logits = hellaswag_evaluate_tokens(ctx, query_embd, 0, params.n_batch, n_vocab, params.n_threads);
if (logits.empty()) {
fprintf(stderr, "%s : failed to eval\n", __func__);
return;
}

auto query_logits = llama_get_logits(ctx);

std::memcpy(tok_logits.data(), query_logits + (context_size-1)*n_vocab, n_vocab*sizeof(float));
std::memcpy(tok_logits.data(), logits.data() + (context_size-1)*n_vocab, n_vocab*sizeof(float));
const auto first_probs = softmax(tok_logits);

hs_data[task_idx].ending_logprob_count[0] = 1;
Expand All @@ -252,7 +271,7 @@ void hellaswag_score(llama_context * ctx, const gpt_params & params) {
// Calculate the logprobs over the ending
for (size_t j = context_size; j < query_size - 1; j++) {

std::memcpy(tok_logits.data(), query_logits + j*n_vocab, n_vocab*sizeof(float));
std::memcpy(tok_logits.data(), logits.data() + j*n_vocab, n_vocab*sizeof(float));

const float prob = softmax(tok_logits)[query_embd[j + 1]];

Expand All @@ -271,7 +290,6 @@ void hellaswag_score(llama_context * ctx, const gpt_params & params) {
// Tokenize the query
query_embd = ::llama_tokenize(ctx, hs_data[task_idx].ending[ending_idx], false);
query_size = query_embd.size();
//printf("Second query: %d\n",(int)query_size);

// Stop if query wont fit the ctx window
if (context_size + query_size > (size_t)params.n_ctx) {
Expand All @@ -286,19 +304,18 @@ void hellaswag_score(llama_context * ctx, const gpt_params & params) {
//}

// Evaluate the query
if (llama_eval(ctx, query_embd.data(), query_embd.size(), context_size, params.n_threads)) {
logits = hellaswag_evaluate_tokens(ctx, query_embd, context_size, params.n_batch, n_vocab, params.n_threads);
if (logits.empty()) {
fprintf(stderr, "%s : failed to eval\n", __func__);
return;
}

query_logits = llama_get_logits(ctx);

hs_data[task_idx].ending_logprob_count[ending_idx] = 1;
hs_data[task_idx].ending_logprob[ending_idx] = std::log(first_probs[query_embd[0]]);

// Calculate the logprobs over the ending
for (size_t j = 0; j < query_size - 1; j++) {
std::memcpy(tok_logits.data(), query_logits + j*n_vocab, n_vocab*sizeof(float));
std::memcpy(tok_logits.data(), logits.data() + j*n_vocab, n_vocab*sizeof(float));

const float prob = softmax(tok_logits)[query_embd[j + 1]];

Expand Down