Skip to content

ggml : revert CUDA broadcast changes from #2183 #2191

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Jul 12, 2023
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
35 changes: 23 additions & 12 deletions ggml-cuda.cu
Original file line number Diff line number Diff line change
Expand Up @@ -239,13 +239,13 @@ struct ggml_tensor_extra_gpu {
cudaEvent_t events[GGML_CUDA_MAX_DEVICES]; // events for synchronizing multiple GPUs
};

static __global__ void add_f32(const float * x, const float * y, float * dst, const int kx, const int ky) {
static __global__ void add_f32(const float * x, const float * y, float * dst, const int k) {
const int i = blockDim.x*blockIdx.x + threadIdx.x;

if (i >= kx) {
if (i >= k) {
return;
}
dst[i] = x[i] + y[i%ky];
dst[i] = x[i] + y[i];
}

static __global__ void add_f16_f32_f16(const half * x, const float * y, half * dst, const int k) {
Expand Down Expand Up @@ -1718,9 +1718,9 @@ static __global__ void scale_f32(const float * x, float * dst, const float scale
dst[i] = scale * x[i];
}

static void add_f32_cuda(const float * x, const float * y, float * dst, const int kx, const int ky, cudaStream_t stream) {
const int num_blocks = (kx + CUDA_ADD_BLOCK_SIZE - 1) / CUDA_ADD_BLOCK_SIZE;
add_f32<<<num_blocks, CUDA_ADD_BLOCK_SIZE, 0, stream>>>(x, y, dst, kx, ky);
static void add_f32_cuda(const float * x, const float * y, float * dst, const int k, cudaStream_t stream) {
const int num_blocks = (k + CUDA_ADD_BLOCK_SIZE - 1) / CUDA_ADD_BLOCK_SIZE;
add_f32<<<num_blocks, CUDA_ADD_BLOCK_SIZE, 0, stream>>>(x, y, dst, k);
}

static void add_f16_f32_f16_cuda(const half * x, const float * y, half * dst, const int k, cudaStream_t stream) {
Expand Down Expand Up @@ -2272,7 +2272,10 @@ inline void ggml_cuda_op_add(

GGML_ASSERT(src0_ddq_i != nullptr || src0_ddf_i != nullptr);
GGML_ASSERT(src1_ddf_i != nullptr);
GGML_ASSERT(dst_ddf_i != nullptr);
GGML_ASSERT(dst_ddf_i != nullptr);

// TODO: support broadcasting
GGML_ASSERT(ggml_nelements(src0) == ggml_nelements(src1));

const int64_t ne00 = src0->ne[0];
const int64_t i01_diff = i01_high - i01_low;
Expand All @@ -2281,7 +2284,7 @@ inline void ggml_cuda_op_add(

// compute
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
add_f32_cuda(src0_ddf_i, src1_ddf_i, dst_ddf_i, ne00*i01_diff, ne10, cudaStream_main);
add_f32_cuda(src0_ddf_i, src1_ddf_i, dst_ddf_i, ne00*i01_diff, cudaStream_main);
} else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
add_f16_f32_f16_cuda((half *) src0_ddq_i, src1_ddf_i, (half *) dst_ddf_i, ne00*i01_diff, cudaStream_main);
} else {
Expand All @@ -2302,14 +2305,22 @@ inline void ggml_cuda_op_mul(

GGML_ASSERT(src0_ddf_i != nullptr);
GGML_ASSERT(src1_ddf_i != nullptr);
GGML_ASSERT(dst_ddf_i != nullptr);
GGML_ASSERT(dst_ddf_i != nullptr);

const int64_t ne00 = src0->ne[0];
const int64_t i01_diff = i01_high - i01_low;

const int64_t ne10 = src1->ne[0];
const int64_t ne11 = src1->ne[1];

mul_f32_cuda(src0_ddf_i, src1_ddf_i, dst_ddf_i, ne00*i01_diff, ne10, cudaStream_main);
for (int64_t i01 = i01_low; i01 < i01_high; i01++) {
const int64_t i11 = i1*ne11 + i01%ne11; // broadcast src1 across src0

float * src0_ddf_i01 = src0_ddf_i + i01*ne00;
float * src1_ddf_i01 = src1_ddf_i + i11*ne10;
float * dst_ddf_i01 = dst_ddf_i + i01*ne00;

// compute
mul_f32_cuda(src0_ddf_i01, src1_ddf_i01, dst_ddf_i01, ne00, ne10, cudaStream_main);
}

(void) dst;
(void) src0_ddq_i;
Expand Down