Skip to content

Certain 70B Q4_0 quants outputting gibberish (other quant formats unaffected) #3148

Closed
@TheBloke

Description

@TheBloke

Hi guys

I've just had reports that two specific Q4_0 70B models are outputting gibberish, and I've confirmed the same.

Example file with this issue: https://huggingface.co/TheBloke/Spicyboros-70B-2.2-GGUF/blob/main/spicyboros-70b-2.2.Q4_0.gguf
Second example, made 12 days ago: https://huggingface.co/TheBloke/Airoboros-L2-70B-2.1-Creative-GGUF/blob/main/airoboros-l2-70b-2.1-creative.Q4_0.gguf

I've had no reports of problems with other quants. I've tested Q4_K_M and Q5_0 from the same model and commit, and both were fine.

The Spicyboros bad q4_0 was made with commit d54a402

At first I thought it was a recent problem until I realised there was also a file from 12 days ago with the same issue.

But a 70B q4_0 I made three days ago, with commit 21ac3a1, is fine: https://huggingface.co/TheBloke/ORCA_LLaMA_70B_QLoRA-GGUF/blob/main/orca_llama_70b_qlora.Q4_0.gguf

I notice both broken models were made by Jon Durbin - could there be something in the source model causing this? But only for q4_0? That's weird.

Full iutput when testing Spicyboros 70B Q4_0 70B gguf file (too long to post in one comment!) : https://gist.github.com/TheBloke/b7a45d3e5ff1432f90aa221de6a5fb08#file-q4_0-gibberish-log

Trimmed log:

(pytorch2)  ubuntu@a10:/workspace/git/gguf-llama (master ✔) ᐅ ./main -m /workspace/spicyboros-70B-2.2.Q4_0.gguf -c 4096 -p "A chat.\nUSER: Write a story about llamas\nASSISTANT:" -n 128
Log start
main: build = 1215 (89e8959)
main: seed  = 1694547445
ggml_init_cublas: found 1 CUDA devices:
  Device 0: NVIDIA A10, compute capability 8.6
llama_model_loader: loaded meta data with 20 key-value pairs and 723 tensors from /workspace/spicyboros-70B-2.2.Q4_0.gguf (version GGUF V2 (latest))
llama_model_loader: - tensor    0:                token_embd.weight q4_0     [  8192, 32000,     1,     1 ]
llama_model_loader: - tensor    1:              blk.0.attn_q.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor    2:              blk.0.attn_k.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor    3:              blk.0.attn_v.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor    4:         blk.0.attn_output.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor    5:            blk.0.ffn_gate.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor    6:              blk.0.ffn_up.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor    7:            blk.0.ffn_down.weight q4_0     [ 28672,  8192,     1,     1 ]
llama_model_loader: - tensor    8:           blk.0.attn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor    9:            blk.0.ffn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor   10:              blk.1.attn_q.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor   11:              blk.1.attn_k.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor   12:              blk.1.attn_v.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor   13:         blk.1.attn_output.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor   14:            blk.1.ffn_gate.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor   15:              blk.1.ffn_up.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor   16:            blk.1.ffn_down.weight q4_0     [ 28672,  8192,     1,     1 ]
llama_model_loader: - tensor   17:           blk.1.attn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor   18:            blk.1.ffn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor   19:              blk.2.attn_q.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor   20:              blk.2.attn_k.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor   21:              blk.2.attn_v.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor   22:         blk.2.attn_output.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor   23:            blk.2.ffn_gate.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor   24:              blk.2.ffn_up.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor   25:            blk.2.ffn_down.weight q4_0     [ 28672,  8192,     1,     1 ]
llama_model_loader: - tensor   26:           blk.2.attn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor   27:            blk.2.ffn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor   28:              blk.3.attn_q.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor   29:              blk.3.attn_k.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor   30:              blk.3.attn_v.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor   31:         blk.3.attn_output.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor   32:            blk.3.ffn_gate.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor   33:              blk.3.ffn_up.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor   34:            blk.3.ffn_down.weight q4_0     [ 28672,  8192,     1,     1 ]
llama_model_loader: - tensor   35:           blk.3.attn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor   36:            blk.3.ffn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor   37:              blk.4.attn_q.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor   38:              blk.4.attn_k.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor   39:              blk.4.attn_v.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor   40:         blk.4.attn_output.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor   41:            blk.4.ffn_gate.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor   42:              blk.4.ffn_up.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor   43:            blk.4.ffn_down.weight q4_0     [ 28672,  8192,     1,     1 ]
llama_model_loader: - tensor   44:           blk.4.attn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor   45:            blk.4.ffn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor   46:              blk.5.attn_q.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor   47:              blk.5.attn_k.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor   48:              blk.5.attn_v.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor   49:         blk.5.attn_output.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor   50:            blk.5.ffn_gate.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor   51:              blk.5.ffn_up.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor   52:            blk.5.ffn_down.weight q4_0     [ 28672,  8192,     1,     1 ]
... trimmed ...
llama_model_loader: - tensor  716:           blk.79.ffn_gate.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  717:             blk.79.ffn_up.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  718:           blk.79.ffn_down.weight q4_0     [ 28672,  8192,     1,     1 ]
llama_model_loader: - tensor  719:          blk.79.attn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  720:           blk.79.ffn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  721:               output_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  722:                    output.weight q6_K     [  8192, 32000,     1,     1 ]
llama_model_loader: - kv   0:                       general.architecture str
llama_model_loader: - kv   1:                               general.name str
llama_model_loader: - kv   2:                       llama.context_length u32
llama_model_loader: - kv   3:                     llama.embedding_length u32
llama_model_loader: - kv   4:                          llama.block_count u32
llama_model_loader: - kv   5:                  llama.feed_forward_length u32
llama_model_loader: - kv   6:                 llama.rope.dimension_count u32
llama_model_loader: - kv   7:                 llama.attention.head_count u32
llama_model_loader: - kv   8:              llama.attention.head_count_kv u32
llama_model_loader: - kv   9:     llama.attention.layer_norm_rms_epsilon f32
llama_model_loader: - kv  10:                       llama.rope.freq_base f32
llama_model_loader: - kv  11:                          general.file_type u32
llama_model_loader: - kv  12:                       tokenizer.ggml.model str
llama_model_loader: - kv  13:                      tokenizer.ggml.tokens arr
llama_model_loader: - kv  14:                      tokenizer.ggml.scores arr
llama_model_loader: - kv  15:                  tokenizer.ggml.token_type arr
llama_model_loader: - kv  16:                tokenizer.ggml.bos_token_id u32
llama_model_loader: - kv  17:                tokenizer.ggml.eos_token_id u32
llama_model_loader: - kv  18:            tokenizer.ggml.unknown_token_id u32
llama_model_loader: - kv  19:               general.quantization_version u32
llama_model_loader: - type  f32:  161 tensors
llama_model_loader: - type q4_0:  561 tensors
llama_model_loader: - type q6_K:    1 tensors
llm_load_print_meta: format         = GGUF V2 (latest)
llm_load_print_meta: arch           = llama
llm_load_print_meta: vocab type     = SPM
llm_load_print_meta: n_vocab        = 32000
llm_load_print_meta: n_merges       = 0
llm_load_print_meta: n_ctx_train    = 4096
llm_load_print_meta: n_ctx          = 4096
llm_load_print_meta: n_embd         = 8192
llm_load_print_meta: n_head         = 64
llm_load_print_meta: n_head_kv      = 8
llm_load_print_meta: n_layer        = 80
llm_load_print_meta: n_rot          = 128
llm_load_print_meta: n_gqa          = 8
llm_load_print_meta: f_norm_eps     = 1.0e-05
llm_load_print_meta: f_norm_rms_eps = 1.0e-05
llm_load_print_meta: n_ff           = 28672
llm_load_print_meta: freq_base      = 10000.0
llm_load_print_meta: freq_scale     = 1
llm_load_print_meta: model type     = 70B
llm_load_print_meta: model ftype    = mostly Q4_0
llm_load_print_meta: model size     = 68.98 B
llm_load_print_meta: general.name   = LLaMA v2
llm_load_print_meta: BOS token = 1 '<s>'
llm_load_print_meta: EOS token = 2 '</s>'
llm_load_print_meta: UNK token = 0 '<unk>'
llm_load_print_meta: LF token  = 13 '<0x0A>'
llm_load_tensors: ggml ctx size =    0.23 MB
llm_load_tensors: using CUDA for GPU acceleration
llm_load_tensors: mem required  = 37070.97 MB (+ 1280.00 MB per state)
llm_load_tensors: offloading 0 repeating layers to GPU
llm_load_tensors: offloaded 0/83 layers to GPU
llm_load_tensors: VRAM used: 0 MB
....................................................................................................
llama_new_context_with_model: kv self size  = 1280.00 MB
llama_new_context_with_model: compute buffer total size =  561.47 MB
llama_new_context_with_model: VRAM scratch buffer: 560.00 MB

system_info: n_threads = 15 / 30 | AVX = 1 | AVX2 = 1 | AVX512 = 1 | AVX512_VBMI = 1 | AVX512_VNNI = 1 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 |
sampling: repeat_last_n = 64, repeat_penalty = 1.100000, presence_penalty = 0.000000, frequency_penalty = 0.000000, top_k = 40, tfs_z = 1.000000, top_p = 0.950000, typical_p = 1.000000, temp = 0.800000, mirostat = 0, mirostat_lr = 0.100000, mirostat_ent = 5.000000
generate: n_ctx = 4096, n_batch = 512, n_predict = 128, n_keep = 0


 A chat.\nUSER: Write a story about llamas\nASSISTANT:oid◄◄letteakoÝbrieпіbrieroberiaÝiomcych Insertomengenommen prolong Feder Sebbrie◄ fifigliaÝ Matthoauthandro◄loyee◄ obser cabarfgresloyeeigliaMITgenommen◄тистиbrie stat◄

Metadata

Metadata

Assignees

No one assigned

    Labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions