@@ -2455,13 +2455,15 @@ def set_vocab(self):
2455
2455
2456
2456
text = piece .encode ("utf-8" )
2457
2457
score = 0.0
2458
- if len (piece ) != 0 and token_id < 64789 :
2458
+ # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
2459
+ # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
2460
+ if len (piece ) != 0 and token_id < tokenizer .tokenizer .sp_model .vocab_size ():
2459
2461
score = tokenizer .tokenizer .sp_model .get_score (token_id )
2460
2462
2461
2463
if len (piece ) == 0 :
2462
2464
text = f"[PAD{ token_id } ]" .encode ("utf-8" )
2463
2465
2464
- if token_id >= 64789 :
2466
+ if token_id >= tokenizer . tokenizer . sp_model . vocab_size () :
2465
2467
toktype = SentencePieceTokenTypes .UNKNOWN
2466
2468
tokens .append (text )
2467
2469
scores .append (score )
@@ -2491,7 +2493,7 @@ def set_vocab(self):
2491
2493
special_vocab .add_to_gguf (self .gguf_writer )
2492
2494
2493
2495
def set_gguf_parameters (self ):
2494
- self .gguf_writer .add_name ("ChatGLM-6b-chat" )
2496
+ self .gguf_writer .add_name (self . dir_model . name )
2495
2497
n_embed = self .hparams .get ("hidden_size" , self .hparams .get ("n_embed" ))
2496
2498
n_head = self .hparams .get ("n_head" , self .hparams .get ("num_attention_heads" ))
2497
2499
n_head_kv = self .hparams .get ("multi_query_group_num" , n_head )
@@ -2507,16 +2509,12 @@ def set_gguf_parameters(self):
2507
2509
self .gguf_writer .add_add_bos_token (False )
2508
2510
2509
2511
def modify_tensors (self , data_torch : Tensor , name : str , bid : int | None ) -> Iterable [tuple [str , Tensor ]]:
2510
- if name .endswith (".rotary_pos_emb.inv_freq" ):
2511
- return []
2512
-
2513
2512
del bid # unused
2514
2513
2515
- name = re .sub (r'transformer\.' , '' , name )
2516
-
2517
- if name == "word_embeddings.weight" :
2518
- assert self .tensor_names is not None
2514
+ if name .endswith (".rotary_pos_emb.inv_freq" ):
2515
+ return []
2519
2516
2517
+ name = name .removeprefix ("transformer." )
2520
2518
return [(self .map_tensor_name (name ), data_torch )]
2521
2519
2522
2520
0 commit comments