@@ -1544,6 +1544,27 @@ void llama_model::load_hparams(llama_model_loader & ml) {
15441544 default: type = LLM_TYPE_UNKNOWN;
15451545 }
15461546 } break;
1547+ case LLM_ARCH_NEMOTRONH:
1548+ {
1549+ ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
1550+ ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
1551+ ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
1552+ ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
1553+ ml.get_key(LLM_KV_SSM_GROUP_COUNT, hparams.ssm_n_group);
1554+
1555+ // A layer is recurrent IFF the n_head_kv value is set to 0 and
1556+ // the n_ff value is set to 0
1557+ for (uint32_t i = 0; i < hparams.n_layer; ++i) {
1558+ hparams.recurrent_layer_arr[i] = (hparams.n_head_kv(i) == 0 && hparams.n_ff(i) == 0);
1559+ }
1560+
1561+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
1562+
1563+ switch (hparams.n_layer) {
1564+ case 56: type = LLM_TYPE_9B; break;
1565+ default: type = LLM_TYPE_UNKNOWN;
1566+ }
1567+ } break;
15471568 case LLM_ARCH_EXAONE:
15481569 {
15491570 ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
@@ -4626,6 +4647,75 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
46264647 layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
46274648 }
46284649 } break;
4650+ case LLM_ARCH_NEMOTRONH:
4651+ {
4652+ // mamba2 Mixer SSM params
4653+ // NOTE: int64_t for tensor dimensions
4654+ const int64_t d_conv = hparams.ssm_d_conv;
4655+ const int64_t d_inner = hparams.ssm_d_inner;
4656+ const int64_t d_state = hparams.ssm_d_state;
4657+ const int64_t n_ssm_head = hparams.ssm_dt_rank;
4658+ const int64_t n_group = hparams.ssm_n_group;
4659+ const int64_t d_in_proj = 2*d_inner + 2*n_group*d_state + n_ssm_head;
4660+
4661+ // embeddings
4662+ tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
4663+
4664+ // output
4665+ {
4666+ output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
4667+ output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
4668+ // if output is NULL, init from the input tok embed, duplicated to allow offloading
4669+ if (output == NULL) {
4670+ output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
4671+ }
4672+ }
4673+
4674+ for (int i = 0; i < n_layer; ++i) {
4675+ auto & layer = layers[i];
4676+
4677+ if (hparams.is_recurrent(i)) {
4678+ // ssm layers
4679+ layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
4680+ layer.ssm_in = create_tensor(tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, d_in_proj}, 0);
4681+
4682+ layer.ssm_conv1d = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner + 2*n_group*d_state}, 0);
4683+ layer.ssm_conv1d_b = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner + 2*n_group*d_state}, TENSOR_NOT_REQUIRED);
4684+
4685+ layer.ssm_dt_b = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), {n_ssm_head}, 0);
4686+
4687+ // no "weight" suffix for these
4688+ layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {1, n_ssm_head}, 0);
4689+ layer.ssm_d = create_tensor(tn(LLM_TENSOR_SSM_D, i), {1, n_ssm_head}, 0);
4690+
4691+ layer.ssm_norm = create_tensor(tn(LLM_TENSOR_SSM_NORM, "weight", i), {d_inner / n_group, n_group}, 0);
4692+
4693+ // out_proj
4694+ layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd}, 0);
4695+ } else if (hparams.n_ff(i) == 0) {
4696+ // attention layers (with optional bias)
4697+ layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
4698+ const int64_t n_head_i = hparams.n_head(i);
4699+ const int64_t n_embd_k_gqa_i = hparams.n_embd_k_gqa(i);
4700+ const int64_t n_embd_v_gqa_i = hparams.n_embd_v_gqa(i);
4701+ layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head_i}, 0);
4702+ layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa_i}, 0);
4703+ layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa_i}, 0);
4704+ layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head_i, n_embd}, 0);
4705+ layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
4706+ layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_k_gqa_i}, TENSOR_NOT_REQUIRED);
4707+ layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_v_gqa_i}, TENSOR_NOT_REQUIRED);
4708+ layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
4709+ } else {
4710+ // mlp layers
4711+ layer.ffn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
4712+ layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { hparams.n_ff(i), n_embd}, 0);
4713+ layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, hparams.n_ff(i)}, 0);
4714+ layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
4715+ layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {hparams.n_ff(i)}, TENSOR_NOT_REQUIRED);
4716+ }
4717+ }
4718+ } break;
46294719 case LLM_ARCH_EXAONE:
46304720 {
46314721 tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
@@ -5800,7 +5890,8 @@ void llama_model::print_info() const {
58005890 arch == LLM_ARCH_JAMBA ||
58015891 arch == LLM_ARCH_FALCON_H1 ||
58025892 arch == LLM_ARCH_PLAMO2 ||
5803- arch == LLM_ARCH_GRANITE_HYBRID) {
5893+ arch == LLM_ARCH_GRANITE_HYBRID ||
5894+ arch == LLM_ARCH_NEMOTRONH) {
58045895 LLAMA_LOG_INFO("%s: ssm_d_conv = %u\n", __func__, hparams.ssm_d_conv);
58055896 LLAMA_LOG_INFO("%s: ssm_d_inner = %u\n", __func__, hparams.ssm_d_inner);
58065897 LLAMA_LOG_INFO("%s: ssm_d_state = %u\n", __func__, hparams.ssm_d_state);
@@ -14070,6 +14161,145 @@ struct llm_build_nemotron : public llm_graph_context {
1407014161 }
1407114162};
1407214163
14164+ struct llm_build_nemotronh : public llm_graph_context_mamba {
14165+ llm_build_nemotronh(
14166+ const llama_model & model,
14167+ const llm_graph_params & params) :
14168+ llm_graph_context_mamba(params) {
14169+
14170+ const int64_t n_embd_head = hparams.n_embd_head_v;
14171+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
14172+
14173+ ggml_tensor * cur;
14174+ ggml_tensor * inpL;
14175+
14176+ inpL = build_inp_embd(model.tok_embd);
14177+
14178+ auto * inp = build_inp_mem_hybrid();
14179+
14180+ ggml_tensor * inp_out_ids = build_inp_out_ids();
14181+
14182+ for (int il = 0; il < n_layer; ++il) {
14183+ struct ggml_tensor * inpSA = inpL;
14184+
14185+ // norm
14186+ cur = build_norm(inpL,
14187+ model.layers[il].attn_norm, NULL,
14188+ LLM_NORM_RMS, il);
14189+ cb(cur, "attn_norm", il);
14190+
14191+ if (hparams.is_recurrent(il)) {
14192+ // ssm layer //
14193+ cur = build_mamba2_layer(inp->get_recr(), cur, model, ubatch, il);
14194+ } else if (hparams.n_ff(il) == 0) {
14195+ // attention layer //
14196+ cur = build_attention_layer(cur, inp->get_attn(), model, n_embd_head, il);
14197+ } else {
14198+ cur = build_ffn_layer(cur, inpSA, model, il);
14199+ }
14200+
14201+ if (il == n_layer - 1 && inp_out_ids) {
14202+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
14203+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
14204+ }
14205+
14206+ // input for next layer
14207+ inpL = cur;
14208+ }
14209+
14210+ cur = inpL;
14211+
14212+ cur = build_norm(cur,
14213+ model.output_norm, NULL,
14214+ LLM_NORM_RMS, -1);
14215+
14216+ cb(cur, "result_norm", -1);
14217+ res->t_embd = cur;
14218+
14219+ // lm_head
14220+ cur = build_lora_mm(model.output, cur);
14221+ cb(cur, "result_output", -1);
14222+ res->t_logits = cur;
14223+
14224+ ggml_build_forward_expand(gf, cur);
14225+ }
14226+
14227+ ggml_tensor * build_attention_layer(
14228+ ggml_tensor * cur,
14229+ llm_graph_input_attn_kv * inp_attn,
14230+ const llama_model & model,
14231+ const int64_t n_embd_head,
14232+ const int il) {
14233+
14234+ // compute Q and K and (optionally) RoPE them
14235+ ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
14236+ cb(Qcur, "Qcur", il);
14237+ if (model.layers[il].bq) {
14238+ Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
14239+ cb(Qcur, "Qcur", il);
14240+ }
14241+
14242+ ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
14243+ cb(Kcur, "Kcur", il);
14244+ if (model.layers[il].bk) {
14245+ Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
14246+ cb(Kcur, "Kcur", il);
14247+ }
14248+
14249+ ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
14250+ cb(Vcur, "Vcur", il);
14251+ if (model.layers[il].bv) {
14252+ Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
14253+ cb(Vcur, "Vcur", il);
14254+ }
14255+
14256+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, hparams.n_head(il), n_tokens);
14257+ Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, hparams.n_head_kv(il), n_tokens);
14258+ Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, hparams.n_head_kv(il), n_tokens);
14259+
14260+ cb(Qcur, "Qcur", il);
14261+ cb(Kcur, "Kcur", il);
14262+ cb(Vcur, "Vcur", il);
14263+
14264+ const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
14265+ cur = build_attn(inp_attn,
14266+ model.layers[il].wo, model.layers[il].bo,
14267+ Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
14268+ cb(cur, "attn_out", il);
14269+ return cur;
14270+ }
14271+
14272+ ggml_tensor * build_ffn_layer(
14273+ ggml_tensor * cur,
14274+ ggml_tensor * inpSA,
14275+ const llama_model & model,
14276+ const int il) {
14277+
14278+ ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
14279+ cb(ffn_inp, "ffn_inp", il);
14280+ cur = build_norm(ffn_inp,
14281+ model.layers[il].ffn_norm, NULL,
14282+ LLM_NORM_RMS, il);
14283+ cb(cur, "ffn_norm", il);
14284+
14285+ cur = build_ffn(cur,
14286+ model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
14287+ model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
14288+ model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
14289+ NULL,
14290+ LLM_FFN_SILU, LLM_FFN_PAR, il);
14291+ cb(cur, "ffn_out", il);
14292+
14293+ cur = ggml_add(ctx0, cur, ffn_inp);
14294+ cb(cur, "ffn_out", il);
14295+
14296+ cur = build_cvec(cur, il);
14297+ cb(cur, "l_out", il);
14298+
14299+ return cur;
14300+ }
14301+ };
14302+
1407314303struct llm_build_exaone : public llm_graph_context {
1407414304 llm_build_exaone(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
1407514305 const int64_t n_embd_head = hparams.n_embd_head_v;
@@ -18418,6 +18648,10 @@ ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const {
1841818648 {
1841918649 llm = std::make_unique<llm_build_nemotron>(*this, params);
1842018650 } break;
18651+ case LLM_ARCH_NEMOTRONH:
18652+ {
18653+ llm = std::make_unique<llm_build_nemotronh>(*this, params);
18654+ } break;
1842118655 case LLM_ARCH_EXAONE:
1842218656 {
1842318657 llm = std::make_unique<llm_build_exaone>(*this, params);
@@ -18648,6 +18882,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
1864818882 case LLM_ARCH_RWKV7:
1864918883 case LLM_ARCH_ARWKV7:
1865018884 case LLM_ARCH_WAVTOKENIZER_DEC:
18885+ case LLM_ARCH_NEMOTRONH:
1865118886 return LLAMA_ROPE_TYPE_NONE;
1865218887
1865318888 // use what we call a normal RoPE, operating on pairs of consecutive head values
0 commit comments