Skip to content

Commit 0b5def5

Browse files
bottlerfacebook-github-bot
authored andcommitted
avoid numpy warning in split
Summary: avoid creating a numpy array of random things just to split it: this can now generate a warning e.g. if the list contains lists of varying lengths. There might also be a performance win here, and we could do more of the same if we care about that. (The vanilla way to avoid the new warning is to replace `np.split(a,` with `np.split(np.array(a, dtype=object), ` btw.) Reviewed By: shapovalov Differential Revision: D40209308 fbshipit-source-id: daae33a23ceb444e8e7241f72ce1525593e2f239
1 parent 56d3465 commit 0b5def5

File tree

1 file changed

+2
-2
lines changed

1 file changed

+2
-2
lines changed

pytorch3d/implicitron/dataset/types.py

+2-2
Original file line numberDiff line numberDiff line change
@@ -225,8 +225,8 @@ def _dataclass_list_from_dict_list(dlist, typeannot):
225225
assert indices[-1] == len(all_keys_res)
226226

227227
keys = np.split(list(all_keys_res), indices[:-1])
228-
vals = np.split(list(all_vals_res), indices[:-1])
229-
return [cls(zip(k, v)) for k, v in zip(keys, vals)]
228+
all_vals_res_iter = iter(all_vals_res)
229+
return [cls(zip(k, all_vals_res_iter)) for k in keys]
230230
elif not dataclasses.is_dataclass(typeannot):
231231
return dlist
232232

0 commit comments

Comments
 (0)