Skip to content

[Backport 8.x] Vector search example #1806

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Apr 29, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
186 changes: 186 additions & 0 deletions examples/async/vectors.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,186 @@
# Licensed to Elasticsearch B.V. under one or more contributor
# license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright
# ownership. Elasticsearch B.V. licenses this file to you under
# the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.

"""
# Vector database example

Requirements:

$ pip install nltk sentence_transformers tqdm elasticsearch-dsl[async]

To run the example:

$ python vectors.py "text to search"

The index will be created automatically if it does not exist. Add
`--recreate-index` to regenerate it.

The example dataset includes a selection of workplace documents. The
following are good example queries to try out with this dataset:

$ python vectors.py "work from home"
$ python vectors.py "vacation time"
$ python vectors.py "can I bring a bird to work?"

When the index is created, the documents are split into short passages, and for
each passage an embedding is generated using the open source
"all-MiniLM-L6-v2" model. The documents that are returned as search results are
those that have the highest scored passages. Add `--show-inner-hits` to the
command to see individual passage results as well.
"""

import argparse
import asyncio
import json
import os
from urllib.request import urlopen

import nltk
from sentence_transformers import SentenceTransformer
from tqdm import tqdm

from elasticsearch_dsl import (
AsyncDocument,
Date,
DenseVector,
InnerDoc,
Keyword,
Nested,
Text,
async_connections,
)

DATASET_URL = "https://raw.githubusercontent.com/elastic/elasticsearch-labs/main/datasets/workplace-documents.json"
MODEL_NAME = "all-MiniLM-L6-v2"

# initialize sentence tokenizer
nltk.download("punkt", quiet=True)


class Passage(InnerDoc):
content = Text()
embedding = DenseVector()


class WorkplaceDoc(AsyncDocument):
class Index:
name = "workplace_documents"

name = Text()
summary = Text()
content = Text()
created = Date()
updated = Date()
url = Keyword()
category = Keyword()
passages = Nested(Passage)

_model = None

@classmethod
def get_embedding_model(cls):
if cls._model is None:
cls._model = SentenceTransformer(MODEL_NAME)
return cls._model

def clean(self):
# split the content into sentences
passages = nltk.sent_tokenize(self.content)

# generate an embedding for each passage and save it as a nested document
model = self.get_embedding_model()
for passage in passages:
self.passages.append(
Passage(content=passage, embedding=list(model.encode(passage)))
)


async def create():

# create the index
await WorkplaceDoc._index.delete(ignore_unavailable=True)
await WorkplaceDoc.init()

# download the data
dataset = json.loads(urlopen(DATASET_URL).read())

# import the dataset
for data in tqdm(dataset, desc="Indexing documents..."):
doc = WorkplaceDoc(
name=data["name"],
summary=data["summary"],
content=data["content"],
created=data.get("created_on"),
updated=data.get("updated_at"),
url=data["url"],
category=data["category"],
)
await doc.save()


async def search(query):
model = WorkplaceDoc.get_embedding_model()
return WorkplaceDoc.search().knn(
field="passages.embedding",
k=5,
num_candidates=50,
query_vector=list(model.encode(query)),
inner_hits={"size": 2},
)


def parse_args():
parser = argparse.ArgumentParser(description="Vector database with Elasticsearch")
parser.add_argument(
"--recreate-index", action="store_true", help="Recreate and populate the index"
)
parser.add_argument(
"--show-inner-hits",
action="store_true",
help="Show results for individual passages",
)
parser.add_argument("query", action="store", help="The search query")
return parser.parse_args()


async def main():
args = parse_args()

# initiate the default connection to elasticsearch
async_connections.create_connection(hosts=[os.environ["ELASTICSEARCH_URL"]])

if args.recreate_index or not await WorkplaceDoc._index.exists():
await create()

results = await search(args.query)

async for hit in results:
print(
f"Document: {hit.name} [Category: {hit.category}] [Score: {hit.meta.score}]"
)
print(f"Summary: {hit.summary}")
if args.show_inner_hits:
for passage in hit.meta.inner_hits.passages:
print(f" - [Score: {passage.meta.score}] {passage.content!r}")
print("")

# close the connection
await async_connections.get_connection().close()


if __name__ == "__main__":
asyncio.run(main())
185 changes: 185 additions & 0 deletions examples/vectors.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,185 @@
# Licensed to Elasticsearch B.V. under one or more contributor
# license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright
# ownership. Elasticsearch B.V. licenses this file to you under
# the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.

"""
# Vector database example

Requirements:

$ pip install nltk sentence_transformers tqdm elasticsearch-dsl

To run the example:

$ python vectors.py "text to search"

The index will be created automatically if it does not exist. Add
`--recreate-index` to regenerate it.

The example dataset includes a selection of workplace documents. The
following are good example queries to try out with this dataset:

$ python vectors.py "work from home"
$ python vectors.py "vacation time"
$ python vectors.py "can I bring a bird to work?"

When the index is created, the documents are split into short passages, and for
each passage an embedding is generated using the open source
"all-MiniLM-L6-v2" model. The documents that are returned as search results are
those that have the highest scored passages. Add `--show-inner-hits` to the
command to see individual passage results as well.
"""

import argparse
import json
import os
from urllib.request import urlopen

import nltk
from sentence_transformers import SentenceTransformer
from tqdm import tqdm

from elasticsearch_dsl import (
Date,
DenseVector,
Document,
InnerDoc,
Keyword,
Nested,
Text,
connections,
)

DATASET_URL = "https://raw.githubusercontent.com/elastic/elasticsearch-labs/main/datasets/workplace-documents.json"
MODEL_NAME = "all-MiniLM-L6-v2"

# initialize sentence tokenizer
nltk.download("punkt", quiet=True)


class Passage(InnerDoc):
content = Text()
embedding = DenseVector()


class WorkplaceDoc(Document):
class Index:
name = "workplace_documents"

name = Text()
summary = Text()
content = Text()
created = Date()
updated = Date()
url = Keyword()
category = Keyword()
passages = Nested(Passage)

_model = None

@classmethod
def get_embedding_model(cls):
if cls._model is None:
cls._model = SentenceTransformer(MODEL_NAME)
return cls._model

def clean(self):
# split the content into sentences
passages = nltk.sent_tokenize(self.content)

# generate an embedding for each passage and save it as a nested document
model = self.get_embedding_model()
for passage in passages:
self.passages.append(
Passage(content=passage, embedding=list(model.encode(passage)))
)


def create():

# create the index
WorkplaceDoc._index.delete(ignore_unavailable=True)
WorkplaceDoc.init()

# download the data
dataset = json.loads(urlopen(DATASET_URL).read())

# import the dataset
for data in tqdm(dataset, desc="Indexing documents..."):
doc = WorkplaceDoc(
name=data["name"],
summary=data["summary"],
content=data["content"],
created=data.get("created_on"),
updated=data.get("updated_at"),
url=data["url"],
category=data["category"],
)
doc.save()


def search(query):
model = WorkplaceDoc.get_embedding_model()
return WorkplaceDoc.search().knn(
field="passages.embedding",
k=5,
num_candidates=50,
query_vector=list(model.encode(query)),
inner_hits={"size": 2},
)


def parse_args():
parser = argparse.ArgumentParser(description="Vector database with Elasticsearch")
parser.add_argument(
"--recreate-index", action="store_true", help="Recreate and populate the index"
)
parser.add_argument(
"--show-inner-hits",
action="store_true",
help="Show results for individual passages",
)
parser.add_argument("query", action="store", help="The search query")
return parser.parse_args()


def main():
args = parse_args()

# initiate the default connection to elasticsearch
connections.create_connection(hosts=[os.environ["ELASTICSEARCH_URL"]])

if args.recreate_index or not WorkplaceDoc._index.exists():
create()

results = search(args.query)

for hit in results:
print(
f"Document: {hit.name} [Category: {hit.category}] [Score: {hit.meta.score}]"
)
print(f"Summary: {hit.summary}")
if args.show_inner_hits:
for passage in hit.meta.inner_hits.passages:
print(f" - [Score: {passage.meta.score}] {passage.content!r}")
print("")

# close the connection
connections.get_connection().close()


if __name__ == "__main__":
main()
4 changes: 4 additions & 0 deletions setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -45,6 +45,10 @@
"pytest-asyncio",
"pytz",
"coverage",
# the following three are used by the vectors example and its tests
"nltk",
"sentence_transformers",
"tqdm",
# Override Read the Docs default (sphinx<2 and sphinx-rtd-theme<0.5)
"sphinx>2",
"sphinx-rtd-theme>0.5",
Expand Down
Loading
Loading