Skip to content

Commit 971d546

Browse files
author
Github Actions
committed
Ravin Kohli: [RELEASE] Release v0.2 (automl#448)
1 parent 314d2de commit 971d546

35 files changed

+364
-341
lines changed
Binary file not shown.
Binary file not shown.
-5.84 KB
Loading
-7.79 KB
Loading
-1.91 KB
Loading
-1.36 KB
Loading

master/_sources/examples/20_basics/example_image_classification.rst.txt

Lines changed: 8 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -35,22 +35,22 @@ Image Classification
3535
3636
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-images-idx3-ubyte.gz
3737
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-images-idx3-ubyte.gz to ../datasets/FashionMNIST/raw/train-images-idx3-ubyte.gz
38-
0%| | 0/26421880 [00:00<?, ?it/s] 0%| | 32768/26421880 [00:00<01:36, 273782.78it/s] 0%| | 65536/26421880 [00:00<01:36, 272085.67it/s] 0%| | 131072/26421880 [00:00<01:06, 395103.56it/s] 1%| | 229376/26421880 [00:00<00:46, 559676.03it/s] 2%|1 | 491520/26421880 [00:00<00:22, 1139362.33it/s] 4%|3 | 950272/26421880 [00:00<00:12, 2040207.80it/s] 7%|7 | 1933312/26421880 [00:00<00:06, 4028864.97it/s] 15%|#4 | 3833856/26421880 [00:00<00:02, 7755299.71it/s] 26%|##6 | 6946816/26421880 [00:01<00:01, 13355008.56it/s] 38%|###7 | 9994240/26421880 [00:01<00:00, 17024900.52it/s] 50%|####9 | 13107200/26421880 [00:01<00:00, 19655030.10it/s] 61%|######1 | 16220160/26421880 [00:01<00:00, 21480086.91it/s] 72%|#######2 | 19070976/26421880 [00:01<00:00, 22104367.53it/s] 84%|########3 | 22183936/26421880 [00:01<00:00, 23166077.29it/s] 96%|#########5| 25264128/26421880 [00:01<00:00, 23905682.06it/s] 100%|##########| 26421880/26421880 [00:01<00:00, 14285093.32it/s]
38+
0%| | 0/26421880 [00:00<?, ?it/s] 0%| | 65536/26421880 [00:00<01:10, 371580.66it/s] 1%| | 196608/26421880 [00:00<00:33, 778605.91it/s] 2%|1 | 491520/26421880 [00:00<00:19, 1299282.40it/s] 6%|5 | 1474560/26421880 [00:00<00:06, 3870397.79it/s] 15%|#4 | 3833856/26421880 [00:00<00:02, 8266135.19it/s] 32%|###1 | 8323072/26421880 [00:00<00:01, 18011894.83it/s] 46%|####5 | 12025856/26421880 [00:00<00:00, 23031717.05it/s] 61%|###### | 15990784/26421880 [00:01<00:00, 24150658.44it/s] 76%|#######6 | 20185088/26421880 [00:01<00:00, 28592387.84it/s] 91%|#########1| 24150016/26421880 [00:01<00:00, 31471992.29it/s] 100%|##########| 26421880/26421880 [00:01<00:00, 19592712.38it/s]
3939
Extracting ../datasets/FashionMNIST/raw/train-images-idx3-ubyte.gz to ../datasets/FashionMNIST/raw
4040

4141
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-labels-idx1-ubyte.gz
4242
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-labels-idx1-ubyte.gz to ../datasets/FashionMNIST/raw/train-labels-idx1-ubyte.gz
43-
0%| | 0/29515 [00:00<?, ?it/s] 100%|##########| 29515/29515 [00:00<00:00, 251659.09it/s] 100%|##########| 29515/29515 [00:00<00:00, 250831.51it/s]
43+
0%| | 0/29515 [00:00<?, ?it/s] 100%|##########| 29515/29515 [00:00<00:00, 337445.40it/s]
4444
Extracting ../datasets/FashionMNIST/raw/train-labels-idx1-ubyte.gz to ../datasets/FashionMNIST/raw
4545

4646
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-images-idx3-ubyte.gz
4747
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-images-idx3-ubyte.gz to ../datasets/FashionMNIST/raw/t10k-images-idx3-ubyte.gz
48-
0%| | 0/4422102 [00:00<?, ?it/s] 1%| | 32768/4422102 [00:00<00:16, 272250.69it/s] 1%|1 | 65536/4422102 [00:00<00:16, 271395.90it/s] 3%|2 | 131072/4422102 [00:00<00:10, 395117.54it/s] 5%|5 | 229376/4422102 [00:00<00:07, 559442.46it/s] 10%|9 | 425984/4422102 [00:00<00:04, 943693.86it/s] 20%|## | 884736/4422102 [00:00<00:01, 1912211.37it/s] 39%|###9 | 1736704/4422102 [00:00<00:00, 3590465.29it/s] 79%|#######8 | 3473408/4422102 [00:00<00:00, 7006166.70it/s] 100%|##########| 4422102/4422102 [00:00<00:00, 4543942.11it/s]
48+
0%| | 0/4422102 [00:00<?, ?it/s] 1%|1 | 65536/4422102 [00:00<00:11, 374268.70it/s] 4%|4 | 196608/4422102 [00:00<00:05, 776151.02it/s] 11%|#1 | 491520/4422102 [00:00<00:02, 1315738.98it/s] 37%|###7 | 1638400/4422102 [00:00<00:00, 4396323.24it/s] 87%|########6 | 3833856/4422102 [00:00<00:00, 8251018.47it/s] 100%|##########| 4422102/4422102 [00:00<00:00, 6247373.62it/s]
4949
Extracting ../datasets/FashionMNIST/raw/t10k-images-idx3-ubyte.gz to ../datasets/FashionMNIST/raw
5050

5151
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-labels-idx1-ubyte.gz
5252
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-labels-idx1-ubyte.gz to ../datasets/FashionMNIST/raw/t10k-labels-idx1-ubyte.gz
53-
0%| | 0/5148 [00:00<?, ?it/s] 100%|##########| 5148/5148 [00:00<00:00, 28225198.68it/s]
53+
0%| | 0/5148 [00:00<?, ?it/s] 100%|##########| 5148/5148 [00:00<00:00, 19647203.81it/s]
5454
Extracting ../datasets/FashionMNIST/raw/t10k-labels-idx1-ubyte.gz to ../datasets/FashionMNIST/raw
5555

5656
Pipeline CS:
@@ -86,13 +86,11 @@ Image Classification
8686
________________________________________
8787
Configuration(values={
8888
'image_augmenter:GaussianBlur:use_augmenter': False,
89-
'image_augmenter:GaussianNoise:sigma_offset': 2.16870839870273,
90-
'image_augmenter:GaussianNoise:use_augmenter': True,
89+
'image_augmenter:GaussianNoise:use_augmenter': False,
9190
'image_augmenter:RandomAffine:use_augmenter': False,
92-
'image_augmenter:RandomCutout:p': 0.4136881910603881,
93-
'image_augmenter:RandomCutout:use_augmenter': True,
91+
'image_augmenter:RandomCutout:use_augmenter': False,
9492
'image_augmenter:Resize:use_augmenter': False,
95-
'image_augmenter:ZeroPadAndCrop:percent': 0.426471061733336,
93+
'image_augmenter:ZeroPadAndCrop:percent': 0.4845537861730235,
9694
'normalizer:__choice__': 'NoNormalizer',
9795
})
9896

@@ -173,7 +171,7 @@ Image Classification
173171
174172
.. rst-class:: sphx-glr-timing
175173

176-
**Total running time of the script:** ( 0 minutes 6.630 seconds)
174+
**Total running time of the script:** ( 0 minutes 5.416 seconds)
177175

178176

179177
.. _sphx_glr_download_examples_20_basics_example_image_classification.py:

master/_sources/examples/20_basics/example_tabular_classification.rst.txt

Lines changed: 12 additions & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -134,7 +134,7 @@ Search for an ensemble of machine learning algorithms
134134
.. code-block:: none
135135
136136
137-
<autoPyTorch.api.tabular_classification.TabularClassificationTask object at 0x7f11a36ddcd0>
137+
<autoPyTorch.api.tabular_classification.TabularClassificationTask object at 0x7efe1fa97520>
138138
139139
140140
@@ -166,20 +166,21 @@ Print the final ensemble performance
166166
.. code-block:: none
167167
168168
{'accuracy': 0.8728323699421965}
169-
| | Preprocessing | Estimator | Weight |
170-
|---:|:--------------------------------------------------------------------------------|:----------------------------------------------------------|---------:|
171-
| 0 | None | CBLearner | 0.68 |
172-
| 1 | SimpleImputer,Variance Threshold,NoCoalescer,OneHotEncoder,MinMaxScaler,FastICA | no embedding,MLPBackbone,FullyConnectedHead,nn.Sequential | 0.28 |
173-
| 2 | SimpleImputer,Variance Threshold,NoCoalescer,NoEncoder,StandardScaler,PCA | no embedding,MLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
174-
| 3 | None | ETLearner | 0.02 |
169+
| | Preprocessing | Estimator | Weight |
170+
|---:|:-------------------------------------------------------------------------------------------|:-------------------------------------------------------------|---------:|
171+
| 0 | None | CBLearner | 0.5 |
172+
| 1 | SimpleImputer,Variance Threshold,NoCoalescer,OneHotEncoder,MinMaxScaler,FastICA | no embedding,MLPBackbone,FullyConnectedHead,nn.Sequential | 0.22 |
173+
| 2 | SimpleImputer,Variance Threshold,MinorityCoalescer,OneHotEncoder,PowerTransformer,Nystroem | embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.14 |
174+
| 3 | SimpleImputer,Variance Threshold,NoCoalescer,NoEncoder,StandardScaler,PCA | no embedding,MLPBackbone,FullyConnectedHead,nn.Sequential | 0.12 |
175+
| 4 | None | RFLearner | 0.02 |
175176
autoPyTorch results:
176177
Dataset name: Australian
177178
Optimisation Metric: accuracy
178179
Best validation score: 0.8713450292397661
179-
Number of target algorithm runs: 24
180-
Number of successful target algorithm runs: 22
180+
Number of target algorithm runs: 22
181+
Number of successful target algorithm runs: 21
181182
Number of crashed target algorithm runs: 0
182-
Number of target algorithms that exceeded the time limit: 2
183+
Number of target algorithms that exceeded the time limit: 1
183184
Number of target algorithms that exceeded the memory limit: 0
184185
185186
@@ -189,7 +190,7 @@ Print the final ensemble performance
189190
190191
.. rst-class:: sphx-glr-timing
191192

192-
**Total running time of the script:** ( 5 minutes 24.323 seconds)
193+
**Total running time of the script:** ( 5 minutes 35.766 seconds)
193194

194195

195196
.. _sphx_glr_download_examples_20_basics_example_tabular_classification.py:

master/_sources/examples/20_basics/example_tabular_regression.rst.txt

Lines changed: 13 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -125,7 +125,7 @@ Search for an ensemble of machine learning algorithms
125125
.. code-block:: none
126126
127127
128-
<autoPyTorch.api.tabular_regression.TabularRegressionTask object at 0x7f123bc83070>
128+
<autoPyTorch.api.tabular_regression.TabularRegressionTask object at 0x7efeaf590eb0>
129129
130130
131131
@@ -159,21 +159,22 @@ Print the final ensemble performance
159159

160160
.. code-block:: none
161161
162-
{'r2': 0.9407884171054208}
162+
{'r2': 0.9412847640085195}
163163
| | Preprocessing | Estimator | Weight |
164164
|---:|:-------------------------------------------------------------------------------------------------|:----------------------------------------------------------------|---------:|
165-
| 0 | None | CBLearner | 0.44 |
166-
| 1 | SimpleImputer,Variance Threshold,NoCoalescer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.42 |
165+
| 0 | None | CBLearner | 0.46 |
166+
| 1 | SimpleImputer,Variance Threshold,NoCoalescer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.4 |
167167
| 2 | SimpleImputer,Variance Threshold,NoCoalescer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.1 |
168-
| 3 | None | LGBMLearner | 0.04 |
168+
| 3 | None | LGBMLearner | 0.02 |
169+
| 4 | SimpleImputer,Variance Threshold,NoCoalescer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
169170
autoPyTorch results:
170-
Dataset name: e1ae53e5-0685-11ed-882e-b1ae9262a945
171+
Dataset name: d21a1548-0700-11ed-884a-abcc1edca430
171172
Optimisation Metric: r2
172-
Best validation score: 0.8670098636440993
173-
Number of target algorithm runs: 23
174-
Number of successful target algorithm runs: 22
175-
Number of crashed target algorithm runs: 0
176-
Number of target algorithms that exceeded the time limit: 1
173+
Best validation score: 0.8669094525651709
174+
Number of target algorithm runs: 21
175+
Number of successful target algorithm runs: 20
176+
Number of crashed target algorithm runs: 1
177+
Number of target algorithms that exceeded the time limit: 0
177178
Number of target algorithms that exceeded the memory limit: 0
178179
179180
@@ -183,7 +184,7 @@ Print the final ensemble performance
183184
184185
.. rst-class:: sphx-glr-timing
185186

186-
**Total running time of the script:** ( 5 minutes 42.804 seconds)
187+
**Total running time of the script:** ( 6 minutes 2.017 seconds)
187188

188189

189190
.. _sphx_glr_download_examples_20_basics_example_tabular_regression.py:

master/_sources/examples/20_basics/example_time_series_forecasting.rst.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -150,7 +150,7 @@ Search for an ensemble of machine learning algorithms
150150
151151
.. rst-class:: sphx-glr-timing
152152

153-
**Total running time of the script:** ( 1 minutes 3.754 seconds)
153+
**Total running time of the script:** ( 0 minutes 59.130 seconds)
154154

155155

156156
.. _sphx_glr_download_examples_20_basics_example_time_series_forecasting.py:

0 commit comments

Comments
 (0)