@@ -134,7 +134,7 @@ Search for an ensemble of machine learning algorithms
134134 .. code-block :: none
135135
136136
137- <autoPyTorch.api.tabular_classification.TabularClassificationTask object at 0x7fdc1b398100 >
137+ <autoPyTorch.api.tabular_classification.TabularClassificationTask object at 0x7f41d91834f0 >
138138
139139
140140
@@ -165,23 +165,25 @@ Print the final ensemble performance
165165
166166 .. code-block :: none
167167
168- {'accuracy': 0.8670520231213873 }
168+ {'accuracy': 0.861271676300578 }
169169 | | Preprocessing | Estimator | Weight |
170170 |---:|:-------------------------------------------------------------------------------------------------|:----------------------------------------------------------------|---------:|
171- | 0 | None | CBLearner | 0.32 |
172- | 1 | SimpleImputer,Variance Threshold,MinorityCoalescer,OneHotEncoder,QuantileTransformer,KitchenSink | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.2 |
173- | 2 | SimpleImputer,Variance Threshold,NoCoalescer,OneHotEncoder,StandardScaler,SRC | embedding,MLPBackbone,FullyConnectedHead,nn.Sequential | 0.2 |
174- | 3 | SimpleImputer,Variance Threshold,MinorityCoalescer,OneHotEncoder,NoScaler,KitchenSink | embedding,ResNetBackbone,FullyConnectedHead,nn.Sequential | 0.12 |
175- | 4 | SimpleImputer,Variance Threshold,MinorityCoalescer,OneHotEncoder,QuantileTransformer,KitchenSink | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.08 |
176- | 5 | SimpleImputer,Variance Threshold,MinorityCoalescer,OneHotEncoder,QuantileTransformer,KitchenSink | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.08 |
171+ | 0 | SimpleImputer,Variance Threshold,NoCoalescer,OneHotEncoder,StandardScaler,SRC | embedding,MLPBackbone,FullyConnectedHead,nn.Sequential | 0.38 |
172+ | 1 | SimpleImputer,Variance Threshold,MinorityCoalescer,OneHotEncoder,NoScaler,KitchenSink | embedding,ResNetBackbone,FullyConnectedHead,nn.Sequential | 0.18 |
173+ | 2 | SimpleImputer,Variance Threshold,MinorityCoalescer,OneHotEncoder,QuantileTransformer,KitchenSink | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.16 |
174+ | 3 | SimpleImputer,Variance Threshold,NoCoalescer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.1 |
175+ | 4 | SimpleImputer,Variance Threshold,MinorityCoalescer,OneHotEncoder,NoScaler,KitchenSink | embedding,ResNetBackbone,FullyConnectedHead,nn.Sequential | 0.08 |
176+ | 5 | None | SVMLearner | 0.04 |
177+ | 6 | SimpleImputer,Variance Threshold,MinorityCoalescer,OneHotEncoder,NoScaler,KitchenSink | embedding,ResNetBackbone,FullyConnectedHead,nn.Sequential | 0.04 |
178+ | 7 | None | CBLearner | 0.02 |
177179 autoPyTorch results:
178180 Dataset name: Australian
179181 Optimisation Metric: accuracy
180182 Best validation score: 0.8713450292397661
181- Number of target algorithm runs: 21
183+ Number of target algorithm runs: 22
182184 Number of successful target algorithm runs: 19
183185 Number of crashed target algorithm runs: 0
184- Number of target algorithms that exceeded the time limit: 2
186+ Number of target algorithms that exceeded the time limit: 3
185187 Number of target algorithms that exceeded the memory limit: 0
186188
187189
@@ -191,7 +193,7 @@ Print the final ensemble performance
191193
192194 .. rst-class :: sphx-glr-timing
193195
194- **Total running time of the script: ** ( 5 minutes 20.003 seconds)
196+ **Total running time of the script: ** ( 5 minutes 29.291 seconds)
195197
196198
197199.. _sphx_glr_download_examples_20_basics_example_tabular_classification.py :
0 commit comments