Skip to content

Commit e08577a

Browse files
a-r-r-o-wpytorchmergebot
authored andcommitted
Spelling fix (pytorch#108490)
Fixes spelling mistake: non-deterinistic -> non-deterministic Pull Request resolved: pytorch#108490 Approved by: https://github.com/ezyang
1 parent 51c2e22 commit e08577a

28 files changed

+28
-28
lines changed

torch/distributions/bernoulli.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -25,7 +25,7 @@ class Bernoulli(ExponentialFamily):
2525
2626
Example::
2727
28-
>>> # xdoctest: +IGNORE_WANT("non-deterinistic")
28+
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
2929
>>> m = Bernoulli(torch.tensor([0.3]))
3030
>>> m.sample() # 30% chance 1; 70% chance 0
3131
tensor([ 0.])

torch/distributions/beta.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -15,7 +15,7 @@ class Beta(ExponentialFamily):
1515
1616
Example::
1717
18-
>>> # xdoctest: +IGNORE_WANT("non-deterinistic")
18+
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
1919
>>> m = Beta(torch.tensor([0.5]), torch.tensor([0.5]))
2020
>>> m.sample() # Beta distributed with concentration concentration1 and concentration0
2121
tensor([ 0.1046])

torch/distributions/binomial.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -24,7 +24,7 @@ class Binomial(Distribution):
2424
2525
Example::
2626
27-
>>> # xdoctest: +IGNORE_WANT("non-deterinistic")
27+
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
2828
>>> m = Binomial(100, torch.tensor([0 , .2, .8, 1]))
2929
>>> x = m.sample()
3030
tensor([ 0., 22., 71., 100.])

torch/distributions/categorical.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -36,7 +36,7 @@ class Categorical(Distribution):
3636
3737
Example::
3838
39-
>>> # xdoctest: +IGNORE_WANT("non-deterinistic")
39+
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
4040
>>> m = Categorical(torch.tensor([ 0.25, 0.25, 0.25, 0.25 ]))
4141
>>> m.sample() # equal probability of 0, 1, 2, 3
4242
tensor(3)

torch/distributions/cauchy.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -18,7 +18,7 @@ class Cauchy(Distribution):
1818
1919
Example::
2020
21-
>>> # xdoctest: +IGNORE_WANT("non-deterinistic")
21+
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
2222
>>> m = Cauchy(torch.tensor([0.0]), torch.tensor([1.0]))
2323
>>> m.sample() # sample from a Cauchy distribution with loc=0 and scale=1
2424
tensor([ 2.3214])

torch/distributions/chi2.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -11,7 +11,7 @@ class Chi2(Gamma):
1111
1212
Example::
1313
14-
>>> # xdoctest: +IGNORE_WANT("non-deterinistic")
14+
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
1515
>>> m = Chi2(torch.tensor([1.0]))
1616
>>> m.sample() # Chi2 distributed with shape df=1
1717
tensor([ 0.1046])

torch/distributions/continuous_bernoulli.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -29,7 +29,7 @@ class ContinuousBernoulli(ExponentialFamily):
2929
3030
Example::
3131
32-
>>> # xdoctest: +IGNORE_WANT("non-deterinistic")
32+
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
3333
>>> m = ContinuousBernoulli(torch.tensor([0.3]))
3434
>>> m.sample()
3535
tensor([ 0.2538])

torch/distributions/dirichlet.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -34,7 +34,7 @@ class Dirichlet(ExponentialFamily):
3434
3535
Example::
3636
37-
>>> # xdoctest: +IGNORE_WANT("non-deterinistic")
37+
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
3838
>>> m = Dirichlet(torch.tensor([0.5, 0.5]))
3939
>>> m.sample() # Dirichlet distributed with concentration [0.5, 0.5]
4040
tensor([ 0.1046, 0.8954])

torch/distributions/exponential.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -14,7 +14,7 @@ class Exponential(ExponentialFamily):
1414
1515
Example::
1616
17-
>>> # xdoctest: +IGNORE_WANT("non-deterinistic")
17+
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
1818
>>> m = Exponential(torch.tensor([1.0]))
1919
>>> m.sample() # Exponential distributed with rate=1
2020
tensor([ 0.1046])

torch/distributions/fishersnedecor.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -16,7 +16,7 @@ class FisherSnedecor(Distribution):
1616
1717
Example::
1818
19-
>>> # xdoctest: +IGNORE_WANT("non-deterinistic")
19+
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
2020
>>> m = FisherSnedecor(torch.tensor([1.0]), torch.tensor([2.0]))
2121
>>> m.sample() # Fisher-Snedecor-distributed with df1=1 and df2=2
2222
tensor([ 0.2453])

0 commit comments

Comments
 (0)