@@ -46,6 +46,9 @@ if (!g_backtest_mode) {
46
46
g_linear <- function (epi_data , ahead , extra_data , ... ) {
47
47
forecaster_baseline_linear(epi_data , ahead , ... , residual_tail = 0.97 , residual_center = 0.097 , no_intercept = TRUE )
48
48
}
49
+ g_linear_no_population_scale <- function (epi_data , ahead , extra_data , ... ) {
50
+ forecaster_baseline_linear(epi_data , ahead , ... , residual_tail = 0.97 , residual_center = 0.097 , no_intercept = TRUE , population_scale = FALSE )
51
+ }
49
52
g_climate_base <- function (epi_data , ahead , extra_data , ... ) {
50
53
climatological_model(
51
54
epi_data ,
@@ -100,6 +103,7 @@ g_windowed_seasonal_extra_sources <- function(epi_data, ahead, extra_data, ...)
100
103
g_forecaster_params_grid <- tibble(
101
104
id = c(
102
105
" linear" ,
106
+ " linear_no_population_scale" ,
103
107
" windowed_seasonal" ,
104
108
" windowed_seasonal_extra_sources" ,
105
109
" climate_base" ,
@@ -108,6 +112,7 @@ g_forecaster_params_grid <- tibble(
108
112
),
109
113
forecaster = rlang :: syms(c(
110
114
" g_linear" ,
115
+ " g_linear_no_population_scale" ,
111
116
" g_windowed_seasonal" ,
112
117
" g_windowed_seasonal_extra_sources" ,
113
118
" g_climate_base" ,
@@ -120,6 +125,7 @@ g_forecaster_params_grid <- tibble(
120
125
list (),
121
126
list (),
122
127
list (),
128
+ list (),
123
129
list ()
124
130
),
125
131
param_names = list (
@@ -128,6 +134,7 @@ g_forecaster_params_grid <- tibble(
128
134
list (),
129
135
list (),
130
136
list (),
137
+ list (),
131
138
list ()
132
139
)
133
140
)
@@ -320,7 +327,8 @@ ensemble_targets <- tar_map(
320
327
name = forecast_nhsn_full_filtered ,
321
328
command = {
322
329
forecast_nhsn_full %> %
323
- filter(forecast_date == as.Date(forecast_date_int ))
330
+ filter(forecast_date == as.Date(forecast_date_int )) %> %
331
+ filter(forecaster %nin % c(" linear" ))
324
332
}
325
333
),
326
334
tar_target(
0 commit comments