|
| 1 | +# -*- coding: utf-8 -*- |
| 2 | + |
| 3 | +""" |
| 4 | +
|
| 5 | +keras_resnet.block.temporal |
| 6 | +~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| 7 | +
|
| 8 | +This module implements a number of popular time distributed residual blocks. |
| 9 | +
|
| 10 | +""" |
| 11 | + |
| 12 | +import keras.layers |
| 13 | +import keras.regularizers |
| 14 | + |
| 15 | +parameters = { |
| 16 | + "kernel_initializer": "he_normal" |
| 17 | +} |
| 18 | + |
| 19 | + |
| 20 | +def basic(filters, strides=(1, 1), first=False): |
| 21 | + """ |
| 22 | +
|
| 23 | + A time distributed basic block. |
| 24 | +
|
| 25 | + :param filters: the output’s feature space |
| 26 | + :param strides: the convolution’s stride |
| 27 | + :param first: whether this is the first instance inside a residual block |
| 28 | +
|
| 29 | + Usage:: |
| 30 | + >>> import keras_resnet.block.temporal |
| 31 | + >>> keras_resnet.block.temporal.basic(64) |
| 32 | +
|
| 33 | + """ |
| 34 | + def f(x): |
| 35 | + if keras.backend.image_data_format() == "channels_last": |
| 36 | + axis = 3 |
| 37 | + else: |
| 38 | + axis = 1 |
| 39 | + |
| 40 | + y = keras.layers.TimeDistributed(keras.layers.Conv2D(filters, (3, 3), strides=strides, padding="same", **parameters))(x) |
| 41 | + |
| 42 | + y = keras.layers.TimeDistributed(keras.layers.BatchNormalization(axis=axis))(y) |
| 43 | + y = keras.layers.TimeDistributed(keras.layers.Activation("relu"))(y) |
| 44 | + |
| 45 | + y = keras.layers.TimeDistributed(keras.layers.Conv2D(filters, (3, 3), padding="same", **parameters))(y) |
| 46 | + |
| 47 | + y = keras.layers.TimeDistributed(keras.layers.BatchNormalization(axis=axis))(y) |
| 48 | + y = _shortcut(x, y) |
| 49 | + y = keras.layers.TimeDistributed(keras.layers.Activation("relu"))(y) |
| 50 | + |
| 51 | + return y |
| 52 | + |
| 53 | + return f |
| 54 | + |
| 55 | + |
| 56 | +def bottleneck(filters, strides=(1, 1), first=False): |
| 57 | + """ |
| 58 | +
|
| 59 | + A time distributed bottleneck block. |
| 60 | +
|
| 61 | + :param filters: the output’s feature space |
| 62 | + :param strides: the convolution’s stride |
| 63 | + :param first: whether this is the first instance inside a residual block |
| 64 | +
|
| 65 | + Usage:: |
| 66 | + >>> import keras_resnet.block.temporal |
| 67 | + >>> keras_resnet.block.temporal.bottleneck(64) |
| 68 | +
|
| 69 | + """ |
| 70 | + def f(x): |
| 71 | + if keras.backend.image_data_format() == "channels_last": |
| 72 | + axis = 3 |
| 73 | + else: |
| 74 | + axis = 1 |
| 75 | + |
| 76 | + if first: |
| 77 | + y = keras.layers.TimeDistributed(keras.layers.Conv2D(filters, (1, 1), strides=strides, padding="same", **parameters))(x) |
| 78 | + else: |
| 79 | + y = keras.layers.TimeDistributed(keras.layers.Conv2D(filters, (3, 3), strides=strides, padding="same", **parameters))(x) |
| 80 | + |
| 81 | + y = keras.layers.TimeDistributed(keras.layers.BatchNormalization(axis=axis))(y) |
| 82 | + y = keras.layers.TimeDistributed(keras.layers.Activation("relu"))(y) |
| 83 | + |
| 84 | + y = keras.layers.TimeDistributed(keras.layers.Conv2D(filters, (3, 3), padding="same", **parameters))(y) |
| 85 | + |
| 86 | + y = keras.layers.TimeDistributed(keras.layers.BatchNormalization(axis=axis))(y) |
| 87 | + y = keras.layers.TimeDistributed(keras.layers.Activation("relu"))(y) |
| 88 | + |
| 89 | + y = keras.layers.TimeDistributed(keras.layers.Conv2D(filters * 4, (1, 1), **parameters))(y) |
| 90 | + |
| 91 | + y = keras.layers.TimeDistributed(keras.layers.BatchNormalization(axis=axis))(y) |
| 92 | + y = _shortcut(x, y) |
| 93 | + y = keras.layers.TimeDistributed(keras.layers.Activation("relu"))(y) |
| 94 | + |
| 95 | + return y |
| 96 | + |
| 97 | + return f |
| 98 | + |
| 99 | + |
| 100 | +def _shortcut(a, b): |
| 101 | + a_shape = keras.backend.int_shape(a) |
| 102 | + b_shape = keras.backend.int_shape(b) |
| 103 | + |
| 104 | + if keras.backend.image_data_format() == "channels_last": |
| 105 | + x = int(round(a_shape[1] // b_shape[1])) |
| 106 | + y = int(round(a_shape[2] // b_shape[2])) |
| 107 | + |
| 108 | + if x > 1 or y > 1 or not a_shape[3] == b_shape[3]: |
| 109 | + a = keras.layers.TimeDistributed(keras.layers.Conv2D(b_shape[3], (1, 1), strides=(x, y), padding="same", **parameters))(a) |
| 110 | + |
| 111 | + a = keras.layers.TimeDistributed(keras.layers.BatchNormalization(axis=3))(a) |
| 112 | + else: |
| 113 | + x = int(round(a_shape[2] // b_shape[2])) |
| 114 | + y = int(round(a_shape[3] // b_shape[3])) |
| 115 | + |
| 116 | + if x > 1 or y > 1 or not a_shape[1] == b_shape[1]: |
| 117 | + a = keras.layers.TimeDistributed(keras.layers.Conv2D(b_shape[1], (1, 1), strides=(x, y), padding="same", **parameters))(a) |
| 118 | + |
| 119 | + a = keras.layers.TimeDistributed(keras.layers.BatchNormalization(axis=1))(a) |
| 120 | + |
| 121 | + return keras.layers.add([a, b]) |
0 commit comments