|  | 
|  | 1 | +package org.beehive.gpullama3.tornadovm; | 
|  | 2 | + | 
|  | 3 | +import uk.ac.manchester.tornado.api.KernelContext; | 
|  | 4 | +import uk.ac.manchester.tornado.api.math.TornadoMath; | 
|  | 5 | +import uk.ac.manchester.tornado.api.types.arrays.FloatArray; | 
|  | 6 | +import uk.ac.manchester.tornado.api.types.arrays.IntArray; | 
|  | 7 | + | 
|  | 8 | +public class Qwen2Kernels { | 
|  | 9 | + | 
|  | 10 | +    public static void processHeadsFlashAttention(KernelContext context, FloatArray q, FloatArray key_cache, FloatArray value_cache, FloatArray xb, int nHeads, int headSize, int kvDim, int kvMul, | 
|  | 11 | +            IntArray positionHolder, int layer, int contextLength) { | 
|  | 12 | + | 
|  | 13 | +        // Thread and workgroup information | 
|  | 14 | +        int globalTid = context.globalIdx; | 
|  | 15 | +        int localTid = context.localIdx; | 
|  | 16 | +        int localSize = context.localGroupSizeX; | 
|  | 17 | +        int workgroupId = context.groupIdx; | 
|  | 18 | + | 
|  | 19 | +        // Calculate which head this workgroup processes | 
|  | 20 | +        int h = workgroupId; | 
|  | 21 | + | 
|  | 22 | +        // Early exit if beyond head count | 
|  | 23 | +        if (h >= nHeads) { | 
|  | 24 | +            return; | 
|  | 25 | +        } | 
|  | 26 | + | 
|  | 27 | +        int pos = positionHolder.get(0); | 
|  | 28 | +        int loff = layer * contextLength * kvDim; | 
|  | 29 | +        int kvHeadIdx = h / kvMul; | 
|  | 30 | +        int BLOCK_SIZE_C = 8; | 
|  | 31 | + | 
|  | 32 | +        // Allocate shared memory for tiled computation | 
|  | 33 | +        float[] q_shared = context.allocateFloatLocalArray(headSize); | 
|  | 34 | +        float[] k_tile = context.allocateFloatLocalArray(BLOCK_SIZE_C * headSize); | 
|  | 35 | +        float[] v_tile = context.allocateFloatLocalArray(BLOCK_SIZE_C * headSize); | 
|  | 36 | +        float[] s_tile = context.allocateFloatLocalArray(BLOCK_SIZE_C); | 
|  | 37 | +        float[] shared_max = context.allocateFloatLocalArray(1); | 
|  | 38 | + | 
|  | 39 | +        // Per-thread output accumulation | 
|  | 40 | +        float[] output = new float[headSize]; | 
|  | 41 | +        for (int i = 0; i < headSize; i++) { | 
|  | 42 | +            output[i] = 0.0f; | 
|  | 43 | +        } | 
|  | 44 | + | 
|  | 45 | +        // Thread-local accumulators for online softmax | 
|  | 46 | +        float maxScore = Float.NEGATIVE_INFINITY; | 
|  | 47 | +        float sumExp = 0.0f; | 
|  | 48 | + | 
|  | 49 | +        // Cooperatively load query vector into shared memory | 
|  | 50 | +        for (int i = localTid; i < headSize; i += localSize) { | 
|  | 51 | +            q_shared[i] = q.get(h * headSize + i); | 
|  | 52 | +        } | 
|  | 53 | +        context.localBarrier(); | 
|  | 54 | + | 
|  | 55 | +        // Process sequence in tiles | 
|  | 56 | +        for (int tileC = 0; tileC <= pos; tileC += BLOCK_SIZE_C) { | 
|  | 57 | +            int tileEnd = Math.min(tileC + BLOCK_SIZE_C - 1, pos); | 
|  | 58 | + | 
|  | 59 | +            // Cooperatively load key and value vectors for this tile | 
|  | 60 | +            for (int tIdxInSeq = tileC + localTid; tIdxInSeq <= tileEnd; tIdxInSeq += localSize) { | 
|  | 61 | +                int k_v_idx_in_tile = tIdxInSeq - tileC; | 
|  | 62 | +                int tileMemOffset = k_v_idx_in_tile * headSize; | 
|  | 63 | + | 
|  | 64 | +                for (int d = 0; d < headSize; d++) { | 
|  | 65 | +                    int kvCacheAbsolutePos = tIdxInSeq; | 
|  | 66 | +                    int kvOffset = loff + kvCacheAbsolutePos * kvDim + kvHeadIdx * headSize + d; | 
|  | 67 | +                    k_tile[tileMemOffset + d] = key_cache.get(kvOffset); | 
|  | 68 | +                    v_tile[tileMemOffset + d] = value_cache.get(kvOffset); | 
|  | 69 | +                } | 
|  | 70 | +            } | 
|  | 71 | +            context.localBarrier(); | 
|  | 72 | + | 
|  | 73 | +            // Cooperatively compute attention scores for this tile | 
|  | 74 | +            for (int tIdxInSeq = tileC + localTid; tIdxInSeq <= tileEnd; tIdxInSeq += localSize) { | 
|  | 75 | +                int score_idx_in_tile = tIdxInSeq - tileC; | 
|  | 76 | + | 
|  | 77 | +                float score = 0.0f; | 
|  | 78 | +                for (int d = 0; d < headSize; d++) { | 
|  | 79 | +                    score += q_shared[d] * k_tile[score_idx_in_tile * headSize + d]; | 
|  | 80 | +                } | 
|  | 81 | +                score /= TornadoMath.sqrt(headSize); | 
|  | 82 | +                s_tile[score_idx_in_tile] = score; | 
|  | 83 | +            } | 
|  | 84 | +            context.localBarrier(); | 
|  | 85 | + | 
|  | 86 | +            // Find max score in this tile using reduction | 
|  | 87 | +            float tileLocalMax = Float.NEGATIVE_INFINITY; | 
|  | 88 | +            for (int i = 0; i <= tileEnd - tileC; i++) { | 
|  | 89 | +                if (s_tile[i] > tileLocalMax) { | 
|  | 90 | +                    tileLocalMax = s_tile[i]; | 
|  | 91 | +                } | 
|  | 92 | +            } | 
|  | 93 | + | 
|  | 94 | +            // Thread 0 broadcasts the max | 
|  | 95 | +            if (localTid == 0) { | 
|  | 96 | +                shared_max[0] = tileLocalMax; | 
|  | 97 | +            } | 
|  | 98 | +            context.localBarrier(); | 
|  | 99 | +            float currentTileMax = shared_max[0]; | 
|  | 100 | + | 
|  | 101 | +            // Update global max and rescale if needed | 
|  | 102 | +            float newMax = Math.max(maxScore, currentTileMax); | 
|  | 103 | +            if (newMax != maxScore && maxScore != Float.NEGATIVE_INFINITY) { | 
|  | 104 | +                float scale = TornadoMath.exp(maxScore - newMax); | 
|  | 105 | +                sumExp *= scale; | 
|  | 106 | +                for (int d = 0; d < headSize; d++) { | 
|  | 107 | +                    output[d] *= scale; | 
|  | 108 | +                } | 
|  | 109 | +            } | 
|  | 110 | +            maxScore = newMax; | 
|  | 111 | + | 
|  | 112 | +            // Process each key-value pair in the tile | 
|  | 113 | +            for (int t_idx_in_s_tile = 0; t_idx_in_s_tile <= tileEnd - tileC; t_idx_in_s_tile++) { | 
|  | 114 | +                float expScore = TornadoMath.exp(s_tile[t_idx_in_s_tile] - maxScore); | 
|  | 115 | +                sumExp += expScore; | 
|  | 116 | + | 
|  | 117 | +                // Accumulate weighted values | 
|  | 118 | +                for (int d = 0; d < headSize; d++) { | 
|  | 119 | +                    output[d] += expScore * v_tile[t_idx_in_s_tile * headSize + d]; | 
|  | 120 | +                } | 
|  | 121 | +            } | 
|  | 122 | +            context.localBarrier(); | 
|  | 123 | +        } | 
|  | 124 | + | 
|  | 125 | +        // Normalize and cooperatively write final results | 
|  | 126 | +        float normFactor = (sumExp > 0.0f) ? (1.0f / sumExp) : 0.0f; | 
|  | 127 | +        for (int d = localTid; d < headSize; d += localSize) { | 
|  | 128 | +            xb.set(h * headSize + d, output[d] * normFactor); | 
|  | 129 | +        } | 
|  | 130 | +    } | 
|  | 131 | +} | 
0 commit comments