@@ -36,7 +36,7 @@ with AutoPyTorch
3636
3737 .. code-block :: none
3838
39- <smac.runhistory.runhistory.RunHistory object at 0x7ff7fbf2b190 > [TrajEntry(train_perf=2147483648, incumbent_id=1, incumbent=Configuration:
39+ <smac.runhistory.runhistory.RunHistory object at 0x7f983433d160 > [TrajEntry(train_perf=2147483648, incumbent_id=1, incumbent=Configuration:
4040 data_loader:batch_size, Value: 32
4141 encoder:__choice__, Value: 'OneHotEncoder'
4242 feature_preprocessor:__choice__, Value: 'NoFeaturePreprocessor'
@@ -77,7 +77,7 @@ with AutoPyTorch
7777 scaler:__choice__, Value: 'StandardScaler'
7878 trainer:StandardTrainer:weighted_loss, Value: True
7979 trainer:__choice__, Value: 'StandardTrainer'
80- , ta_runs=0, ta_time_used=0.0, wallclock_time=0.0019752979278564453 , budget=0), TrajEntry(train_perf=0.216374269005848 , incumbent_id=1, incumbent=Configuration:
80+ , ta_runs=0, ta_time_used=0.0, wallclock_time=0.00208282470703125 , budget=0), TrajEntry(train_perf=0.16959064327485385 , incumbent_id=1, incumbent=Configuration:
8181 data_loader:batch_size, Value: 32
8282 encoder:__choice__, Value: 'OneHotEncoder'
8383 feature_preprocessor:__choice__, Value: 'NoFeaturePreprocessor'
@@ -118,40 +118,7 @@ with AutoPyTorch
118118 scaler:__choice__, Value: 'StandardScaler'
119119 trainer:StandardTrainer:weighted_loss, Value: True
120120 trainer:__choice__, Value: 'StandardTrainer'
121- , ta_runs=1, ta_time_used=5.269052505493164, wallclock_time=6.652451276779175, budget=5.555555555555555), TrajEntry(train_perf=0.21052631578947367, incumbent_id=2, incumbent=Configuration:
122- data_loader:batch_size, Value: 472
123- encoder:__choice__, Value: 'NoEncoder'
124- feature_preprocessor:Nystroem:gamma, Value: 0.07411722362589628
125- feature_preprocessor:Nystroem:kernel, Value: 'rbf'
126- feature_preprocessor:Nystroem:n_components, Value: 5
127- feature_preprocessor:__choice__, Value: 'Nystroem'
128- imputer:categorical_strategy, Value: 'constant_!missing!'
129- imputer:numerical_strategy, Value: 'constant_zero'
130- lr_scheduler:__choice__, Value: 'NoScheduler'
131- network_backbone:ShapedMLPBackbone:activation, Value: 'tanh'
132- network_backbone:ShapedMLPBackbone:max_units, Value: 766
133- network_backbone:ShapedMLPBackbone:mlp_shape, Value: 'diamond'
134- network_backbone:ShapedMLPBackbone:num_groups, Value: 9
135- network_backbone:ShapedMLPBackbone:output_dim, Value: 243
136- network_backbone:ShapedMLPBackbone:use_dropout, Value: False
137- network_backbone:__choice__, Value: 'ShapedMLPBackbone'
138- network_embedding:__choice__, Value: 'NoEmbedding'
139- network_head:__choice__, Value: 'fully_connected'
140- network_head:fully_connected:activation, Value: 'tanh'
141- network_head:fully_connected:num_layers, Value: 3
142- network_head:fully_connected:units_layer_1, Value: 323
143- network_head:fully_connected:units_layer_2, Value: 332
144- network_init:KaimingInit:bias_strategy, Value: 'Normal'
145- network_init:__choice__, Value: 'KaimingInit'
146- optimizer:SGDOptimizer:lr, Value: 0.0024087824203718427
147- optimizer:SGDOptimizer:momentum, Value: 0.418322885741585
148- optimizer:SGDOptimizer:weight_decay, Value: 0.015250671878609713
149- optimizer:__choice__, Value: 'SGDOptimizer'
150- scaler:__choice__, Value: 'NoScaler'
151- trainer:MixUpTrainer:alpha, Value: 0.4043218849947128
152- trainer:MixUpTrainer:weighted_loss, Value: True
153- trainer:__choice__, Value: 'MixUpTrainer'
154- , ta_runs=3, ta_time_used=40.172093629837036, wallclock_time=46.57782244682312, budget=5.555555555555555), TrajEntry(train_perf=0.17543859649122806, incumbent_id=3, incumbent=Configuration:
121+ , ta_runs=1, ta_time_used=4.665428161621094, wallclock_time=6.140820026397705, budget=5.555555555555555), TrajEntry(train_perf=0.14619883040935677, incumbent_id=2, incumbent=Configuration:
155122 data_loader:batch_size, Value: 224
156123 encoder:__choice__, Value: 'OneHotEncoder'
157124 feature_preprocessor:KernelPCA:gamma, Value: 0.6217858094449208
@@ -184,26 +151,19 @@ with AutoPyTorch
184151 trainer:MixUpTrainer:alpha, Value: 0.7490557199071863
185152 trainer:MixUpTrainer:weighted_loss, Value: False
186153 trainer:__choice__, Value: 'MixUpTrainer'
187- , ta_runs=4 , ta_time_used=48.74088931083679 , wallclock_time=56.56371068954468 , budget=5.555555555555555 )]
188- {'accuracy': 0.861271676300578 }
154+ , ta_runs=12 , ta_time_used=105.31449437141418 , wallclock_time=135.89934992790222 , budget=16.666666666666664 )]
155+ {'accuracy': 0.884393063583815 }
189156 | | Preprocessing | Estimator | Weight |
190157 |---:|:------------------------------------------------------------------|:-------------------------------------------------------------------|---------:|
191- | 0 | SimpleImputer,OneHotEncoder,StandardScaler,KernelPCA | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.14 |
192- | 1 | None | ExtraTreesClassifier | 0.12 |
193- | 2 | None | KNNClassifier | 0.12 |
194- | 3 | SimpleImputer,OneHotEncoder,Normalizer,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.1 |
195- | 4 | SimpleImputer,OneHotEncoder,StandardScaler,KernelPCA | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.08 |
196- | 5 | SimpleImputer,OneHotEncoder,Normalizer,KitchenSink | no embedding,ShapedResNetBackbone,FullyConnectedHead,nn.Sequential | 0.08 |
197- | 6 | SimpleImputer,OneHotEncoder,NoScaler,TruncSVD | no embedding,ShapedResNetBackbone,FullyConnectedHead,nn.Sequential | 0.08 |
198- | 7 | SimpleImputer,NoEncoder,NoScaler,Nystroem | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.06 |
199- | 8 | SimpleImputer,OneHotEncoder,MinMaxScaler,PolynomialFeatures | embedding,ResNetBackbone,FullyConnectedHead,nn.Sequential | 0.06 |
200- | 9 | SimpleImputer,OneHotEncoder,StandardScaler,KernelPCA | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.04 |
201- | 10 | SimpleImputer,NoEncoder,NoScaler,Nystroem | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
202- | 11 | None | LGBMClassifier | 0.02 |
203- | 12 | None | RFClassifier | 0.02 |
204- | 13 | None | SVC | 0.02 |
205- | 14 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
206- | 15 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
158+ | 0 | SimpleImputer,OneHotEncoder,Normalizer,KitchenSink | no embedding,ShapedResNetBackbone,FullyConnectedHead,nn.Sequential | 0.42 |
159+ | 1 | SimpleImputer,OneHotEncoder,StandardScaler,KernelPCA | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.14 |
160+ | 2 | SimpleImputer,OneHotEncoder,StandardScaler,KernelPCA | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.14 |
161+ | 3 | None | KNNClassifier | 0.1 |
162+ | 4 | None | RFClassifier | 0.08 |
163+ | 5 | SimpleImputer,OneHotEncoder,Normalizer,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.04 |
164+ | 6 | None | ExtraTreesClassifier | 0.04 |
165+ | 7 | SimpleImputer,OneHotEncoder,StandardScaler,KernelPCA | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
166+ | 8 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
207167
208168
209169
@@ -295,7 +255,7 @@ with AutoPyTorch
295255
296256 .. rst-class :: sphx-glr-timing
297257
298- **Total running time of the script: ** ( 9 minutes 22.257 seconds)
258+ **Total running time of the script: ** ( 9 minutes 10.157 seconds)
299259
300260
301261.. _sphx_glr_download_examples_example_tabular_classification.py :
0 commit comments