1616
1717from smac .tae import StatusType
1818
19- import autoPyTorch .pipeline .image_classification
20- import autoPyTorch .pipeline .tabular_classification
21- import autoPyTorch .pipeline .tabular_regression
22- import autoPyTorch .pipeline .traditional_tabular_classification
23- import autoPyTorch .pipeline .traditional_tabular_regression
2419from autoPyTorch .automl_common .common .utils .backend import Backend
2520from autoPyTorch .constants import (
2621 CLASSIFICATION_TASKS ,
4237 calculate_loss ,
4338 get_metrics ,
4439)
40+ from autoPyTorch .pipeline .image_classification import ImageClassificationPipeline
41+ from autoPyTorch .pipeline .tabular_classification import TabularClassificationPipeline
42+ from autoPyTorch .pipeline .tabular_regression import TabularRegressionPipeline
43+ from autoPyTorch .pipeline .traditional_tabular_classification import TraditionalTabularClassificationPipeline
44+ from autoPyTorch .pipeline .traditional_tabular_regression import TraditionalTabularRegressionPipeline
4545from autoPyTorch .utils .common import subsampler
4646from autoPyTorch .utils .hyperparameter_search_space_update import HyperparameterSearchSpaceUpdates
4747from autoPyTorch .utils .logging_ import PicklableClientLogger , get_named_client_logger
@@ -65,7 +65,7 @@ class MyTraditionalTabularClassificationPipeline(BaseEstimator):
6565 Attributes:
6666 dataset_properties (Dict[str, Any]):
6767 A dictionary containing dataset specific information
68- random_state (Optional[Union[int, np.random.RandomState] ]):
68+ random_state (Optional[np.random.RandomState]):
6969 Object that contains a seed and allows for reproducible results
7070 init_params (Optional[Dict]):
7171 An optional dictionary that is passed to the pipeline's steps. It complies
@@ -74,15 +74,14 @@ class MyTraditionalTabularClassificationPipeline(BaseEstimator):
7474
7575 def __init__ (self , config : str ,
7676 dataset_properties : Dict [str , Any ],
77- random_state : Optional [Union [ int , np .random .RandomState ] ] = None ,
77+ random_state : Optional [np .random .RandomState ] = None ,
7878 init_params : Optional [Dict ] = None ):
7979 self .config = config
8080 self .dataset_properties = dataset_properties
8181 self .random_state = random_state
8282 self .init_params = init_params
83- self .pipeline = autoPyTorch .pipeline .traditional_tabular_classification .\
84- TraditionalTabularClassificationPipeline (dataset_properties = dataset_properties ,
85- random_state = self .random_state )
83+ self .pipeline = TraditionalTabularClassificationPipeline (dataset_properties = dataset_properties ,
84+ random_state = self .random_state )
8685 configuration_space = self .pipeline .get_hyperparameter_search_space ()
8786 default_configuration = configuration_space .get_default_configuration ().get_dictionary ()
8887 default_configuration ['model_trainer:tabular_traditional_model:traditional_learner' ] = config
@@ -120,8 +119,7 @@ def get_pipeline_representation(self) -> Dict[str, str]:
120119
121120 @staticmethod
122121 def get_default_pipeline_options () -> Dict [str , Any ]:
123- return autoPyTorch .pipeline .traditional_tabular_classification . \
124- TraditionalTabularClassificationPipeline .get_default_pipeline_options ()
122+ return TraditionalTabularClassificationPipeline .get_default_pipeline_options ()
125123
126124
127125class MyTraditionalTabularRegressionPipeline (BaseEstimator ):
@@ -136,23 +134,22 @@ class MyTraditionalTabularRegressionPipeline(BaseEstimator):
136134 Attributes:
137135 dataset_properties (Dict[str, Any]):
138136 A dictionary containing dataset specific information
139- random_state (Optional[Union[int, np.random.RandomState] ]):
137+ random_state (Optional[np.random.RandomState]):
140138 Object that contains a seed and allows for reproducible results
141139 init_params (Optional[Dict]):
142140 An optional dictionary that is passed to the pipeline's steps. It complies
143141 a similar function as the kwargs
144142 """
145143 def __init__ (self , config : str ,
146144 dataset_properties : Dict [str , Any ],
147- random_state : Optional [Union [ int , np .random .RandomState ] ] = None ,
145+ random_state : Optional [np .random .RandomState ] = None ,
148146 init_params : Optional [Dict ] = None ):
149147 self .config = config
150148 self .dataset_properties = dataset_properties
151149 self .random_state = random_state
152150 self .init_params = init_params
153- self .pipeline = autoPyTorch .pipeline .traditional_tabular_regression .\
154- TraditionalTabularRegressionPipeline (dataset_properties = dataset_properties ,
155- random_state = self .random_state )
151+ self .pipeline = TraditionalTabularRegressionPipeline (dataset_properties = dataset_properties ,
152+ random_state = self .random_state )
156153 configuration_space = self .pipeline .get_hyperparameter_search_space ()
157154 default_configuration = configuration_space .get_default_configuration ().get_dictionary ()
158155 default_configuration ['model_trainer:tabular_traditional_model:traditional_learner' ] = config
@@ -185,8 +182,7 @@ def get_pipeline_representation(self) -> Dict[str, str]:
185182
186183 @staticmethod
187184 def get_default_pipeline_options () -> Dict [str , Any ]:
188- return autoPyTorch .pipeline .traditional_tabular_regression . \
189- TraditionalTabularRegressionPipeline .get_default_pipeline_options ()
185+ return TraditionalTabularRegressionPipeline .get_default_pipeline_options ()
190186
191187
192188class DummyClassificationPipeline (DummyClassifier ):
@@ -460,7 +456,7 @@ def __init__(self, backend: Backend,
460456 elif isinstance (self .configuration , str ):
461457 self .pipeline_class = MyTraditionalTabularRegressionPipeline
462458 elif isinstance (self .configuration , Configuration ):
463- self .pipeline_class = autoPyTorch . pipeline . tabular_regression . TabularRegressionPipeline
459+ self .pipeline_class = TabularRegressionPipeline
464460 else :
465461 raise ValueError ('task {} not available' .format (self .task_type ))
466462 self .predict_function = self ._predict_regression
@@ -474,9 +470,9 @@ def __init__(self, backend: Backend,
474470 raise ValueError ("Only tabular tasks are currently supported with traditional methods" )
475471 elif isinstance (self .configuration , Configuration ):
476472 if self .task_type in TABULAR_TASKS :
477- self .pipeline_class = autoPyTorch . pipeline . tabular_classification . TabularClassificationPipeline
473+ self .pipeline_class = TabularClassificationPipeline
478474 elif self .task_type in IMAGE_TASKS :
479- self .pipeline_class = autoPyTorch . pipeline . image_classification . ImageClassificationPipeline
475+ self .pipeline_class = ImageClassificationPipeline
480476 else :
481477 raise ValueError ('task {} not available' .format (self .task_type ))
482478 self .predict_function = self ._predict_proba
0 commit comments